If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x=54-18x+8x(x+12)
We move all terms to the left:
2x-(54-18x+8x(x+12))=0
We calculate terms in parentheses: -(54-18x+8x(x+12)), so:We get rid of parentheses
54-18x+8x(x+12)
determiningTheFunctionDomain -18x+8x(x+12)+54
We multiply parentheses
8x^2-18x+96x+54
We add all the numbers together, and all the variables
8x^2+78x+54
Back to the equation:
-(8x^2+78x+54)
-8x^2+2x-78x-54=0
We add all the numbers together, and all the variables
-8x^2-76x-54=0
a = -8; b = -76; c = -54;
Δ = b2-4ac
Δ = -762-4·(-8)·(-54)
Δ = 4048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4048}=\sqrt{16*253}=\sqrt{16}*\sqrt{253}=4\sqrt{253}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-4\sqrt{253}}{2*-8}=\frac{76-4\sqrt{253}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+4\sqrt{253}}{2*-8}=\frac{76+4\sqrt{253}}{-16} $
| x-x=13 | | 17=5k-(-2) | | 4x+26x-8=6(5x+7) | | 4x26x-8=6(5x+7) | | 3/x+7=41 | | 25^=125^x+1 | | E^(2x)-8x+1=0 | | E^2^x-8x+1=0 | | 3(x+2)=8x+-5x+4 | | m–1=4 | | 13x^2-28x=42 | | -2=2(n=5) | | 8x2–6x–5=0 | | 8x2–6x–5= | | -4+5x=2x+3(x+1) | | -4+4x=2x+3(x+1) | | -4+3x=2x+3(x+1) | | -2/3(3x^2-6)=18 | | 17x-23=14x+4 | | 3(x+4=x+19 | | 8x+9x+95=180 | | m+5/3=9 | | 17x+15=12x-35 | | 3a+4/2=14 | | 6p/15+3=9 | | 3x/5=-2 | | 62+x3+1=90 | | 24x-12=14x+28 | | 4x+2x-5=45 | | n=5(2)^n-1 | | -5|u|=10 | | 8(2a+7)=5(3a-8+ |