2y(3y)+16(y+2)-10=

Simple and best practice solution for 2y(3y)+16(y+2)-10= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y(3y)+16(y+2)-10= equation:


Simplifying
2y(3y) + 16(y + 2) + -10 = 0

Remove parenthesis around (3y)
2y * 3y + 16(y + 2) + -10 = 0

Reorder the terms for easier multiplication:
2 * 3y * y + 16(y + 2) + -10 = 0

Multiply 2 * 3
6y * y + 16(y + 2) + -10 = 0

Multiply y * y
6y2 + 16(y + 2) + -10 = 0

Reorder the terms:
6y2 + 16(2 + y) + -10 = 0
6y2 + (2 * 16 + y * 16) + -10 = 0
6y2 + (32 + 16y) + -10 = 0

Reorder the terms:
32 + -10 + 16y + 6y2 = 0

Combine like terms: 32 + -10 = 22
22 + 16y + 6y2 = 0

Solving
22 + 16y + 6y2 = 0

Solving for variable 'y'.

Factor out the Greatest Common Factor (GCF), '2'.
2(11 + 8y + 3y2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(11 + 8y + 3y2)' equal to zero and attempt to solve: Simplifying 11 + 8y + 3y2 = 0 Solving 11 + 8y + 3y2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 3.666666667 + 2.666666667y + y2 = 0 Move the constant term to the right: Add '-3.666666667' to each side of the equation. 3.666666667 + 2.666666667y + -3.666666667 + y2 = 0 + -3.666666667 Reorder the terms: 3.666666667 + -3.666666667 + 2.666666667y + y2 = 0 + -3.666666667 Combine like terms: 3.666666667 + -3.666666667 = 0.000000000 0.000000000 + 2.666666667y + y2 = 0 + -3.666666667 2.666666667y + y2 = 0 + -3.666666667 Combine like terms: 0 + -3.666666667 = -3.666666667 2.666666667y + y2 = -3.666666667 The y term is 2.666666667y. Take half its coefficient (1.333333334). Square it (1.777777780) and add it to both sides. Add '1.777777780' to each side of the equation. 2.666666667y + 1.777777780 + y2 = -3.666666667 + 1.777777780 Reorder the terms: 1.777777780 + 2.666666667y + y2 = -3.666666667 + 1.777777780 Combine like terms: -3.666666667 + 1.777777780 = -1.888888887 1.777777780 + 2.666666667y + y2 = -1.888888887 Factor a perfect square on the left side: (y + 1.333333334)(y + 1.333333334) = -1.888888887 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 4x-10=116 | | 3x+7x= | | 29+.08=46.12 | | 2.33+.66=-5+-3y | | 4x-4+2= | | -5=x+3y | | 4(x+4)5=2x-4 | | 3x-(2x+5)=3 | | 6x^2+28x-10=0 | | -3+-1y=3+0.5y | | (2x-9)1/4=2+x/12 | | 4+-0.5y=-7+x | | 2y-6+4y-8= | | 8x-6-3x= | | 16.3k+7.5k=-64.1 | | 2z^2+17z+10= | | 10=22-0.22Q | | -2.5+w=3.7 | | 5(k+9)=0 | | 6c^2+7c+2=0 | | 11=-5x*-2 | | x^2-15x-154=0 | | s^2+17s+52=0 | | -3=-6x+3(3x-6) | | 21x^2+29x-10=0 | | x^2+18x=63 | | 4x^2+20+25=0 | | 3x+13=-8 | | 17a^2-24ac=0 | | y^2+4y-32=0 | | 4h^2-56=0 | | 32+18r+r^2=0 |

Equations solver categories