2y+(22/8y)=190

Simple and best practice solution for 2y+(22/8y)=190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y+(22/8y)=190 equation:



2y+(22/8y)=190
We move all terms to the left:
2y+(22/8y)-(190)=0
Domain of the equation: 8y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
2y+(+22/8y)-190=0
We get rid of parentheses
2y+22/8y-190=0
We multiply all the terms by the denominator
2y*8y-190*8y+22=0
Wy multiply elements
16y^2-1520y+22=0
a = 16; b = -1520; c = +22;
Δ = b2-4ac
Δ = -15202-4·16·22
Δ = 2308992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2308992}=\sqrt{64*36078}=\sqrt{64}*\sqrt{36078}=8\sqrt{36078}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1520)-8\sqrt{36078}}{2*16}=\frac{1520-8\sqrt{36078}}{32} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1520)+8\sqrt{36078}}{2*16}=\frac{1520+8\sqrt{36078}}{32} $

See similar equations:

| y+14-3y=86 | | -29=-5(r-8)-9 | | 3-m/6=12 | | x+5=20–2x | | 4w-3+3(2w+1)=-2(w=7) | | 4n-2(3-n)=18 | | 2d-46=3d | | -2/5=u+6 | | 1.5(2t−6)=3t−6 | | x^2+6x-50=8x+30 | | 5x+-6=3x+4 | | -6x=-8x+18 | | 3x−(x+2)=18 | | 8=a/3-9 | | 24x+247=235 | | 3x-12=3(x- | | 10x+16^=6x+20 | | 1000​(9x−​10)=50​(768+​100x) | | 24x+247=35 | | 10x−3(2x+2)=30 | | -4a+24=-3 | | 12d-46=3d | | 10-2(x+6)=0 | | 8(s-5)=24 | | (16x+53)-(9-2x)+(4x+3)-(1x-45)=(45x+13) | | -x=2-x | | 9e-5=7e-11 | | -5=2e-5/3 | | 2m-3=m+5 | | (15x+12)=(19x-24 | | 49=-7(s-4) | | 10(x-4)=4(x+4)+4(x-2) |

Equations solver categories