2y+100+(-12/7y)+90-10=180

Simple and best practice solution for 2y+100+(-12/7y)+90-10=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y+100+(-12/7y)+90-10=180 equation:



2y+100+(-12/7y)+90-10=180
We move all terms to the left:
2y+100+(-12/7y)+90-10-(180)=0
Domain of the equation: 7y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
2y+(-12/7y)=0
We get rid of parentheses
2y-12/7y=0
We multiply all the terms by the denominator
2y*7y-12=0
Wy multiply elements
14y^2-12=0
a = 14; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·14·(-12)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*14}=\frac{0-4\sqrt{42}}{28} =-\frac{4\sqrt{42}}{28} =-\frac{\sqrt{42}}{7} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*14}=\frac{0+4\sqrt{42}}{28} =\frac{4\sqrt{42}}{28} =\frac{\sqrt{42}}{7} $

See similar equations:

| 26=213-y | | 12s+27=171 | | 197-v=251 | | k/3+11=13 | | 2x+4=2-3x | | 6x9=30 | | 4x/3-x-1/2=5/4 | | N2-6n=-8 | | x6=6 | | 2w+4+w=3w-3+6 | | 12(y+1)=4(4y-3) | | 5x9+6=75 | | 200x+76=180 | | 2(x-8)=6x-32 | | 142=6+4(-4x+6) | | 8y-6=12y+14 | | -6=-7u+2(u-8) | | 1/3n(5n+12)+1/3n=-1 | | 2/3n+4=8 | | 3x+20+127=180 | | (X+50)+(x+20)=9x | | 75-y=29 | | w-7.87=9.61 | | 6v+24=60 | | 3x+3+42=90 | | w+2.2=5.87 | | 6h^2=2h | | 3x+3+42=180 | | u-9.42=8.5 | | y=51=43 | | 8+4w=20 | | w+5.48=9.18 |

Equations solver categories