If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y+211/8y=190
We move all terms to the left:
2y+211/8y-(190)=0
Domain of the equation: 8y!=0We multiply all the terms by the denominator
y!=0/8
y!=0
y∈R
2y*8y-190*8y+211=0
Wy multiply elements
16y^2-1520y+211=0
a = 16; b = -1520; c = +211;
Δ = b2-4ac
Δ = -15202-4·16·211
Δ = 2296896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2296896}=\sqrt{64*35889}=\sqrt{64}*\sqrt{35889}=8\sqrt{35889}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1520)-8\sqrt{35889}}{2*16}=\frac{1520-8\sqrt{35889}}{32} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1520)+8\sqrt{35889}}{2*16}=\frac{1520+8\sqrt{35889}}{32} $
| 2y+2•11/8y=190 | | n*60=180 | | -11+1+8n+4=4n+5n | | 1/3x+2=66 | | n*60=100 | | (2x-3/6)=2x/3+1/2 | | 5-15i/5i=0 | | 9/5+3/5x=41/15+4/3x+1/3 | | 5t+12=72 | | m*72=24 | | -4(z-5)(-z+3)=0 | | 8+3q=-2 | | i-9=-18 | | -1=-4+e/8 | | 3z(z-7)(z+2)=0 | | b/6-9=-9 | | 58x=30x-2 | | 7x0+8(Y)=0 | | (u-7)(u-9)=0 | | (5-z)(5z-8)=0 | | 5x-19=-7+7x | | .5x+.75x=5-2.5x | | 2x/3=17/7 | | -3a-(12)=19 | | x-0,2+x-0,6=x+0,30 | | 9x4=58 | | 3x+1=2×+4 | | x2=+4x=-11 | | -2r^2-10=-r | | 5(2.10*x)=49.10 | | 2.10(5*x)=49.10 | | 19.5+2x=20 |