If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y/y-4+2y-5/y-3=25/3
We move all terms to the left:
2y/y-4+2y-5/y-3-(25/3)=0
Domain of the equation: y!=0We add all the numbers together, and all the variables
y∈R
2y/y+2y-5/y-4-3-(+25/3)=0
We add all the numbers together, and all the variables
2y+2y/y-5/y-7-(+25/3)=0
We get rid of parentheses
2y+2y/y-5/y-7-25/3=0
We calculate fractions
2y+(2y-15)/3y+(-25y)/3y-7=0
We multiply all the terms by the denominator
2y*3y+(2y-15)+(-25y)-7*3y=0
Wy multiply elements
6y^2+(2y-15)+(-25y)-21y=0
We get rid of parentheses
6y^2+2y-25y-21y-15=0
We add all the numbers together, and all the variables
6y^2-44y-15=0
a = 6; b = -44; c = -15;
Δ = b2-4ac
Δ = -442-4·6·(-15)
Δ = 2296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2296}=\sqrt{4*574}=\sqrt{4}*\sqrt{574}=2\sqrt{574}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{574}}{2*6}=\frac{44-2\sqrt{574}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{574}}{2*6}=\frac{44+2\sqrt{574}}{12} $
| (13902172-x)/x=2.14 | | 26-v=226 | | (13902171-x)/x=2.14 | | 2x+110+x=15x+2-3x | | x^2=1.8x10^(-5) | | 25^3x+2=125^x-1 | | X^2/0.2-x=1.8x10^(-5) | | 7n+42=3n+16 | | 7/14=+7/14n | | 12x+12=2x | | 7x-2/4=3x+1 | | 4x+70+70=14x-3x-7 | | -2x^2+x+45=0 | | 1-3x=2.71 | | 2x-4=3x=5 | | 19-4x=0 | | 6x6+6=x | | 6x6=6+ | | 0.04(4c-64)=-0.8(c-4) | | 0.12(6)+0.02x=0.04(12x) | | 3x+6x+18=0 | | m(m-1)(m-2)-m(m-1)+2m-2=0 | | 5(m-5)=5m-25 | | 4m^2=-10m+19 | | 2x3-14=114 | | 4x2-1=15 | | 4p^2=20+12p | | 5x-5-3x+13=180 | | 0.2X^2+600x-600=0 | | 5-x=3x+17 | | 4x-(3x+2)=4x-41 | | 0.2X^2+25x-600=0 |