If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+13y+15=0
a = 2; b = 13; c = +15;
Δ = b2-4ac
Δ = 132-4·2·15
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*2}=\frac{-6}{4} =-1+1/2 $
| (8g/12)+(6/12)+(4/6)=g-(1/2) | | 1/9p-4=7 | | 8g/12+6/12+4/6=g-1/2 | | (7y+4)-(2+6y)=9 | | (-61)=d+(-18) | | 2(4x-3)-7x=2 | | 4x2=40 | | 24+-1=10+8y | | 5+n=-8 | | x+(300+x)=310 | | 8=12/7+b | | 6(3x-4)=4(5x-7) | | 9(y+10)+3(y+6)=228 | | 75=250(x*x*x) | | (23-5×x)÷9=2 | | 8(k+9)=64 | | x/6-16=20 | | Y=4/xx+.2-5 | | {3x+7=2(x+4} | | 0,5+1,5x=14 | | 4p=21 | | 4x2−19x−5=0 | | 2n2+5n-1375=0 | | -0,8+0,2x=0.2 | | 125/t=25 | | 10=-2n-8n | | 125÷t=25 | | 5=3+⅕y | | (b+2)/3=9-(b+6)/2 | | 8+4(x-1)-5(x-3)=2(5-2×) | | 6-⅓z=3 | | ¾x-8=4 |