If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+15y+7=0
a = 2; b = 15; c = +7;
Δ = b2-4ac
Δ = 152-4·2·7
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-13}{2*2}=\frac{-28}{4} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+13}{2*2}=\frac{-2}{4} =-1/2 $
| -2(x+6)=-2(2x-1)+8x | | 6n2+29n–5=0 | | 5u-8+2(5u+8)=-3(u+2) | | 2s2+5s–7=0 | | 6x+14=2(x+1) | | 9f2+24f+16=0 | | 20w2+88w+32=0 | | -9(y-3)=-3y+33 | | 20h2+13h+2=0 | | 2(5n)=-2 | | z=96-100/12 | | 3m+-1m=6+m+-1m | | (x-20)/3=x-11/18 | | 9p-31=2 | | F(x)=10(1+18)^x | | 3x-11+x=x+5-5x | | 8(x+3)=3x+4 | | -6x-3=7x-12 | | 8x³-98x=0 | | y2+18y–19=0 | | {x}{7}=0.4 | | 2x-3=9x+21 | | 4h2+37h+9=0 | | (x+20)+(3x-4)+(6x+6)=180 | | t2–3t–18=0 | | 54=m•9 | | 2x+8=2(x+4)4 | | 108+42+(x+14)=180 | | 54+90+(6x-6)=180 | | 5f-100=50 | | -7+d=-29 | | 4k+7=7k-1;k= |