If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+35-19y=0
a = 2; b = -19; c = +35;
Δ = b2-4ac
Δ = -192-4·2·35
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-9}{2*2}=\frac{10}{4} =2+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+9}{2*2}=\frac{28}{4} =7 $
| 5(3x—1)=40 | | 9(4x-1)2/×=15 | | 44/y=2/11 | | 75n=1500 | | -38=-7n | | 4.2+0.50x=0.05(x-12) | | 2(2x-3)=4x+30 | | 4x-28+20x=-20 | | 16x-33=13x-99 | | 6−8x=20x+20 | | 16x-33=32x-99 | | t=Q/V | | 50Xv=62 | | 23x-58=3x+2 | | -4x+-9x=31 | | 17y+4(7000)=2700 | | 56x-18=34x+26 | | -1/3x-8=-1/4x-3 | | 18y+150-3=1200 | | 3(x+2)=5x-54 | | 4x+7=16.2 | | 6+x/5=6 | | • 2x–1=11x–109 | | (x/3)+3x+(3x+2)=79 | | 8.4/10=x/60 | | X/3+3x+3x+2=79 | | y/3-7=–3 | | |-6+9p|+1=31 | | 11f-(-2f+2);f=½ | | -13-p=29.25 | | B=m+10 | | 5+6x=10x+x |