2y2+7+61+y2=117

Simple and best practice solution for 2y2+7+61+y2=117 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y2+7+61+y2=117 equation:



2y^2+7+61+y2=117
We move all terms to the left:
2y^2+7+61+y2-(117)=0
We add all the numbers together, and all the variables
3y^2-49=0
a = 3; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·3·(-49)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*3}=\frac{0-14\sqrt{3}}{6} =-\frac{14\sqrt{3}}{6} =-\frac{7\sqrt{3}}{3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*3}=\frac{0+14\sqrt{3}}{6} =\frac{14\sqrt{3}}{6} =\frac{7\sqrt{3}}{3} $

See similar equations:

| 7y-4=(y-2) | | t/3=13/2 | | 3/4x-1/2=7/10x | | 25x+8-27x=7-9 | | 39y=19(2y+8) | | 74+8.6x=9x | | 2/3(2-1.5y)+y=4 | | 8w-15w=-49 | | 7.3y−5.18=−51. | | 4^(-9x)=256 | | 5x+x+90=x | | X+x+x=66 | | X=9(5x-3) | | 4x-6(x+2)=8 | | -6=÷18b | | -7+3x=4x | | 7x+4x+90=180 | | 0.3(x+30)-0.02(x-40)=15.4 | | -16=7a-9a+2 | | R=E/x | | 5x+6-4x=4+3x-8 | | 50x-3=296 | | (2w+3)(w)-90=0 | | -5/2+n=-15/4 | | 11/27/4=x/27 | | (2w+3)(w)=90 | | F(0.4)=x+6 | | 5x-4=-6x+3 | | 32/3x=6/x | | 8v^2+v-21=0 | | 0.21x+0.16=19.95x | | 9x^2=1x |

Equations solver categories