If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+8y+-42=0
We add all the numbers together, and all the variables
2y^2+8y=0
a = 2; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*2}=\frac{-16}{4} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*2}=\frac{0}{4} =0 $
| x=√6x-9 | | 0.3=(x-10.25)/x | | 3x+7=25* | | 14=16y-4 | | 6-3(2-3)(x+1))=18 | | 6-3(2-3(x+1))=18 | | 6=7+2p=5 | | 2^+1=17x2^2^ | | X^2+25x+9350=0 | | 7(x+5)=45 | | 8x-4/3x=2 | | 6=7+2p | | 2x=21-12 | | x+x+x+x+x+x+x=104 | | e+e+e=e+e=45 | | 4x+16=3x+16 | | n²=96 | | 10/(x+3)-2/x=1 | | n-45=15 | | 15-n=45 | | 4m=33 | | 45-n=15 | | 2-3x=7-x | | 6x-7=2x41 | | B-3(x-5)=5-2(x+2) | | 80(x+30)=140x | | 1+3x=-1/2 | | 6z-6z=30-30 | | 6x(x)=(4x+7) | | n/5+3=10 | | t+3/3+t/2=6 | | 20+7X-6x^2=0 |