If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+8y=0
a = 2; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*2}=\frac{-16}{4} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*2}=\frac{0}{4} =0 $
| 7-2h=15 | | 8x-15+4x+5=58 | | 4-2(-y+1)=-6(-2y+13)-5 | | 18+2x=10-x | | 6x+23x=53-9x | | -0.9(y-1.5)=0.1(y+19) | | 58-7×x=x | | (4+x)/8=(2-x)/4 | | 106=8x+2 | | x^2+18x=44. | | 5x-10=5x=7 | | (x-11)/11=11(11x-121)/121 | | 6(2x)+6(10)=4(5x)+4(5) | | 2y-14=4y+12 | | 2x/3+1/6=5x/12 | | (6x+27)/x=15 | | (1/5)w+(1/5)=(6/5)w+(1/3) | | 4x+8=4(-2x+5) | | v^2-8v-59=0 | | 10y-19=4y+29 | | 10-X+Y=z | | 3(2400+.33y)+y=7200 | | 14s=2.40=49.60 | | 3(2400+0.33y)+y=7200 | | p2=7p−12 | | F(n)=1- | | 16/x+4=x+28 | | 0=350x-x^2 | | y-1/9y-5/4=2/9(y+1/8) | | 35+5x=4 | | -2x-3-(3x-5)=6x+(-2+6x-4) | | (9/5)(x)+(3/2)=21/6 |