If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+y-35=0
a = 2; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·2·(-35)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{281}}{2*2}=\frac{-1-\sqrt{281}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{281}}{2*2}=\frac{-1+\sqrt{281}}{4} $
| Y=2x²-18x+44 | | -14z=-14 | | b-32=-7 | | 3v4=21 | | 20x-2=142=38 | | 7x-4=52-x | | 18=6x24 | | x=83612 | | 7^n^+10-8=6 | | 2x+4(x-5)+12=-12 | | x^2+14x=-23 | | X-4y=-78 | | 5x–18=2x+6 | | 1.75x+4.5=20 | | -1+2z=z-8+(-z) | | 460=x+55 | | 9x(9)=-45 | | –9d–4d–9d+9=–13 | | 2n+13=15 | | 9+n/6=7 | | (3x+28)+5x+52)+(2x-10)=180 | | 3x2+5x–8=0 | | 3/7+m=8 | | 3)3x2+5x–8=0 | | 5x+20=-3x+92 | | 37+ m = 8 | | 3x(2)+x-5=0 | | 5x+20=-3x92 | | p+12=36 | | 8x+13+10x-5=180 | | 8x+13+10x-5=90 | | -10+5n=90 |