If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-18y+40=0
a = 2; b = -18; c = +40;
Δ = b2-4ac
Δ = -182-4·2·40
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2}{2*2}=\frac{16}{4} =4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2}{2*2}=\frac{20}{4} =5 $
| 19x-18=7x+1+10x-9=180 | | -3y-3y=0 | | 2c-18=12 | | 3^z=1/8 | | 7^3x+5=7^1+x | | x=35-5 | | −6=-3x+22 | | -5q-3q-(-9)=-7 | | 3(2n+1=33 | | 11x=33. | | 9+41+x=x | | c+2.50=18.75 | | 4=h18 | | 9a=11a-2a | | 5/7n-7.6=9.4 | | 105-(5x+9)=5(x+6)+x | | 6x+4(-2x+6)=10 | | 2z/7+3=-8z= | | n+-8=-19 | | –28=–7(d+1) | | 41+57+90=x | | -14g+(-7g)+20g+(-9)=10 | | 1=g13 | | 41 x−2=3 | | –6=–2(n+10) | | n+4/9=8 | | 1.3x+4=x+28 | | 1.08x=4 | | 28y+4=8y= | | 6w-7=-43 | | 4^2x+2=4^x+2 | | 6x+44=88 |