If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-6y+3=0
a = 2; b = -6; c = +3;
Δ = b2-4ac
Δ = -62-4·2·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3}}{2*2}=\frac{6-2\sqrt{3}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3}}{2*2}=\frac{6+2\sqrt{3}}{4} $
| (3x+18)+(8x-3)=180 | | 9-7x=-96 | | 4x+6=6x+7 | | 36x+26=4 | | 36+26x=4 | | 5-y=7.5-11/4y | | 7x^2+3x/5x=12 | | 8+9k/12=71/12 | | 2900*x=3800 | | 13-5x=-37 | | -5t+7t-2t=t | | x-5(2x-3)=-3 | | (((b-2)-6)/2)=34 | | (b-2)-6/2=34 | | x+3x-50=90 | | 6/(p-12)=(3p-15)/(p-12)-3/p | | 4/7=p/42 | | 4y/5=5/4 | | 4^5x=(1/32)^1-x | | .80x=7 | | 50+60+2z=100 | | 2t/t+1+5/2t=2 | | B^2+9b-3=0 | | 23=11x-9-7x | | 13m=142 | | 10c=143 | | x+(x-24)+(x-9)=180 | | 5y+6y-3y-7=1 | | 14-9n=3n+21-12n | | 18x-17x+3=14 | | x+(x+6)+(x+21)=180 | | 22(3x+4)=8(7x-5) |