If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=14
We move all terms to the left:
2y^2-(14)=0
a = 2; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·2·(-14)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*2}=\frac{0-4\sqrt{7}}{4} =-\frac{4\sqrt{7}}{4} =-\sqrt{7} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*2}=\frac{0+4\sqrt{7}}{4} =\frac{4\sqrt{7}}{4} =\sqrt{7} $
| j/3+8=6 | | 8v-34=-7(v+7) | | 3n-13=71 | | x-24/5=36/5 | | 122.24=7.8v+0.56 | | -5(-5u+5)-4u=7(u-4)-3 | | (3x+3)+(11)+(2x+1)=180 | | 1.25x=7.50 | | x÷4+12=28 | | 2x-6/2+3=110 | | 6x−35+3x+53=180 | | x+63/10=87/10 | | 5(y+2)=-4(5y-1)+7y | | u+4.88=9.66 | | g/4+5=8 | | (10x-1)+(15x+7)+(18x+2)=180 | | 15u+19u-6u+13u=14 | | -3/5v=6 | | -7+4(5n+7)=19 | | 15u+19u–6u+13u=14 | | (10x-1)+(15x+7)=180 | | 7.5x=48.75 | | 248=197-x | | -3.8-(-1-9.7x)=2.6+13.3x | | 19q–14q=5 | | 7=15x-8 | | 2w-2=20 | | 5x+1+2x+2x+2=84 | | -15u+-19u–6u+3u+20u=14 | | 17x=36 | | x2+20x=0 | | 4a-20=а+4 |