If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2z(z + 1) * 3(z + 2) = 3z(z + 3) + -1z + z Reorder the terms: 2z(1 + z) * 3(z + 2) = 3z(z + 3) + -1z + z Reorder the terms: 2z(1 + z) * 3(2 + z) = 3z(z + 3) + -1z + z Reorder the terms for easier multiplication: 2 * 3z(1 + z)(2 + z) = 3z(z + 3) + -1z + z Multiply 2 * 3 6z(1 + z)(2 + z) = 3z(z + 3) + -1z + z Multiply (1 + z) * (2 + z) 6z(1(2 + z) + z(2 + z)) = 3z(z + 3) + -1z + z 6z((2 * 1 + z * 1) + z(2 + z)) = 3z(z + 3) + -1z + z 6z((2 + 1z) + z(2 + z)) = 3z(z + 3) + -1z + z 6z(2 + 1z + (2 * z + z * z)) = 3z(z + 3) + -1z + z 6z(2 + 1z + (2z + z2)) = 3z(z + 3) + -1z + z Combine like terms: 1z + 2z = 3z 6z(2 + 3z + z2) = 3z(z + 3) + -1z + z (2 * 6z + 3z * 6z + z2 * 6z) = 3z(z + 3) + -1z + z (12z + 18z2 + 6z3) = 3z(z + 3) + -1z + z Reorder the terms: 12z + 18z2 + 6z3 = 3z(3 + z) + -1z + z 12z + 18z2 + 6z3 = (3 * 3z + z * 3z) + -1z + z 12z + 18z2 + 6z3 = (9z + 3z2) + -1z + z Reorder the terms: 12z + 18z2 + 6z3 = 9z + -1z + z + 3z2 Combine like terms: 9z + -1z = 8z 12z + 18z2 + 6z3 = 8z + z + 3z2 Combine like terms: 8z + z = 9z 12z + 18z2 + 6z3 = 9z + 3z2 Solving 12z + 18z2 + 6z3 = 9z + 3z2 Solving for variable 'z'. Reorder the terms: 12z + -9z + 18z2 + -3z2 + 6z3 = 9z + 3z2 + -9z + -3z2 Combine like terms: 12z + -9z = 3z 3z + 18z2 + -3z2 + 6z3 = 9z + 3z2 + -9z + -3z2 Combine like terms: 18z2 + -3z2 = 15z2 3z + 15z2 + 6z3 = 9z + 3z2 + -9z + -3z2 Reorder the terms: 3z + 15z2 + 6z3 = 9z + -9z + 3z2 + -3z2 Combine like terms: 9z + -9z = 0 3z + 15z2 + 6z3 = 0 + 3z2 + -3z2 3z + 15z2 + 6z3 = 3z2 + -3z2 Combine like terms: 3z2 + -3z2 = 0 3z + 15z2 + 6z3 = 0 Factor out the Greatest Common Factor (GCF), '3z'. 3z(1 + 5z + 2z2) = 0 Ignore the factor 3.Subproblem 1
Set the factor 'z' equal to zero and attempt to solve: Simplifying z = 0 Solving z = 0 Move all terms containing z to the left, all other terms to the right. Simplifying z = 0Subproblem 2
Set the factor '(1 + 5z + 2z2)' equal to zero and attempt to solve: Simplifying 1 + 5z + 2z2 = 0 Solving 1 + 5z + 2z2 = 0 Begin completing the square. Divide all terms by 2 the coefficient of the squared term: Divide each side by '2'. 0.5 + 2.5z + z2 = 0 Move the constant term to the right: Add '-0.5' to each side of the equation. 0.5 + 2.5z + -0.5 + z2 = 0 + -0.5 Reorder the terms: 0.5 + -0.5 + 2.5z + z2 = 0 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + 2.5z + z2 = 0 + -0.5 2.5z + z2 = 0 + -0.5 Combine like terms: 0 + -0.5 = -0.5 2.5z + z2 = -0.5 The z term is 2.5z. Take half its coefficient (1.25). Square it (1.5625) and add it to both sides. Add '1.5625' to each side of the equation. 2.5z + 1.5625 + z2 = -0.5 + 1.5625 Reorder the terms: 1.5625 + 2.5z + z2 = -0.5 + 1.5625 Combine like terms: -0.5 + 1.5625 = 1.0625 1.5625 + 2.5z + z2 = 1.0625 Factor a perfect square on the left side: (z + 1.25)(z + 1.25) = 1.0625 Calculate the square root of the right side: 1.030776406 Break this problem into two subproblems by setting (z + 1.25) equal to 1.030776406 and -1.030776406.Subproblem 1
z + 1.25 = 1.030776406 Simplifying z + 1.25 = 1.030776406 Reorder the terms: 1.25 + z = 1.030776406 Solving 1.25 + z = 1.030776406 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-1.25' to each side of the equation. 1.25 + -1.25 + z = 1.030776406 + -1.25 Combine like terms: 1.25 + -1.25 = 0.00 0.00 + z = 1.030776406 + -1.25 z = 1.030776406 + -1.25 Combine like terms: 1.030776406 + -1.25 = -0.219223594 z = -0.219223594 Simplifying z = -0.219223594Subproblem 2
z + 1.25 = -1.030776406 Simplifying z + 1.25 = -1.030776406 Reorder the terms: 1.25 + z = -1.030776406 Solving 1.25 + z = -1.030776406 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-1.25' to each side of the equation. 1.25 + -1.25 + z = -1.030776406 + -1.25 Combine like terms: 1.25 + -1.25 = 0.00 0.00 + z = -1.030776406 + -1.25 z = -1.030776406 + -1.25 Combine like terms: -1.030776406 + -1.25 = -2.280776406 z = -2.280776406 Simplifying z = -2.280776406Solution
The solution to the problem is based on the solutions from the subproblems. z = {-0.219223594, -2.280776406}Solution
z = {0, -0.219223594, -2.280776406}
| -7x-4=-151 | | -6r+8=-22 | | 5am+7=52 | | Log[4](4x)+log[4](x-3)=2 | | 2z^2-7z-1=0 | | Log[4]x+log[4](x-3)=2 | | x-0.40x=492 | | log(x+16)-log(x)=1 | | 2z^2-7z=1 | | 10x-7=30x+5 | | 4x^2-4x+z=0 | | 6.2x+x=180 | | =(x^2-4+5) | | 3x+4-2x=4x-5 | | 6x=3(x+2)+33 | | x+y-12=0 | | 76x=140 | | 6+.15(x-600)=30.75 | | (24-5y)+(-7y)=180 | | -3k^2+2k-17=-4k^2+7 | | =3(x^2-2x+5) | | 1812x+2=x-1 | | (3x-2)-(4x+3)= | | 19(x-50)=180 | | 34x-2=(x+4) | | -10x+16=0 | | 7y=x+21 | | (y-6)-(y+9)=8y | | 12(6y-10)=7 | | 1.25[x]=.8775 | | t^22+9t=-20 | | (16x-3)=(3x-8) |