2z+4(z+5)=1/2z+5

Simple and best practice solution for 2z+4(z+5)=1/2z+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2z+4(z+5)=1/2z+5 equation:



2z+4(z+5)=1/2z+5
We move all terms to the left:
2z+4(z+5)-(1/2z+5)=0
Domain of the equation: 2z+5)!=0
z∈R
We multiply parentheses
2z+4z-(1/2z+5)+20=0
We get rid of parentheses
2z+4z-1/2z-5+20=0
We multiply all the terms by the denominator
2z*2z+4z*2z-5*2z+20*2z-1=0
Wy multiply elements
4z^2+8z^2-10z+40z-1=0
We add all the numbers together, and all the variables
12z^2+30z-1=0
a = 12; b = 30; c = -1;
Δ = b2-4ac
Δ = 302-4·12·(-1)
Δ = 948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{948}=\sqrt{4*237}=\sqrt{4}*\sqrt{237}=2\sqrt{237}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{237}}{2*12}=\frac{-30-2\sqrt{237}}{24} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{237}}{2*12}=\frac{-30+2\sqrt{237}}{24} $

See similar equations:

| -8y+56=-8(y-7) | | 5/25=9/x | | 1+12z=29 | | -4w-85=5+5w | | 11-6r=2r+3 | | -5h-8=-5+8 | | -6(-4u+8)-5u=5(u+7)-9 | | 21-7d=1-2d | | 6+z/3=1 | | 2x+22=5(x+2) | | -24z-15=-27 | | 5y+14=7y | | 3(w+3)-7w=-15 | | 9x+3-(x-1)=6(x+10) | | 18-6.3z=49.5 | | 9x+3-x-1=6(x+10) | | x+x.05=252 | | 10g-2(8+5g)=16 | | 9m+1m=3m+13 | | 20.1/5+d=23 | | 5x-6=(x-1 | | x²-6x+9=-9x+19 | | x−5=−122.−4x=28 | | 8x²-56x=0 | | 4/9x+20=-5(4x+2)-30 | | 56x=8² | | 271/2-5x=31/2 | | 5x=7x-96 | | 2b−1=5 | | 6x-6=8x+10 | | 54=-620x | | 2(2.4x+4)=4.1x+7+3.1x |

Equations solver categories