If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z-(4-5z)/3z-(8+5z)=3/4
We move all terms to the left:
2z-(4-5z)/3z-(8+5z)-(3/4)=0
Domain of the equation: 3z!=0We add all the numbers together, and all the variables
z!=0/3
z!=0
z∈R
2z-(-5z+4)/3z-(5z+8)-(+3/4)=0
We get rid of parentheses
2z-(-5z+4)/3z-5z-8-3/4=0
We calculate fractions
2z-5z+(20z-16)/12z+(-9z)/12z-8=0
We add all the numbers together, and all the variables
-3z+(20z-16)/12z+(-9z)/12z-8=0
We multiply all the terms by the denominator
-3z*12z+(20z-16)+(-9z)-8*12z=0
Wy multiply elements
-36z^2+(20z-16)+(-9z)-96z=0
We get rid of parentheses
-36z^2+20z-9z-96z-16=0
We add all the numbers together, and all the variables
-36z^2-85z-16=0
a = -36; b = -85; c = -16;
Δ = b2-4ac
Δ = -852-4·(-36)·(-16)
Δ = 4921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-85)-\sqrt{4921}}{2*-36}=\frac{85-\sqrt{4921}}{-72} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-85)+\sqrt{4921}}{2*-36}=\frac{85+\sqrt{4921}}{-72} $
| x-35=3(2x+4)+8 | | 2(2x-2)=2x-16 | | -27=3(x-4)+6 | | 2x+x+1=12 | | 14-4x+16=10 | | x+2x=12+1 | | 12x^2+8x+2=0 | | -5a+12+3a=4a-9a | | 4+5x=3x+11 | | 4+3x-(1+2x)=-3+(6x+5) | | 4.5x=3x+11 | | x+30x=0 | | 9-11x-5-10=7 | | 7·(x−4)=5·(x−2) | | 8.4=(x/60)/(100-(x/50)) | | x+3-6x=16 | | x-0.15x=2800 | | x-0.15x=1250 | | -0.15x=1250-x | | 12-9x=2-7x | | 10x-72=x-54 | | 50x-1800=3000 | | 2.5x–1.5x=1500 | | -2y+7-(4y-7)=3(-y+10)-2(2y-5)-(-y+27) | | |7x-3|+2=11 | | 5|2x-3|-2x+6=18x-4 | | 6t-5-6=4t-8 | | 6=(x+6)/(x-1) | | 4x+x-5=4x+2 | | 9x+40=112 | | 220=95+(25+8)w | | 140=65+(10+6)w |