If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+11z+15=0
a = 2; b = 11; c = +15;
Δ = b2-4ac
Δ = 112-4·2·15
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*2}=\frac{-12}{4} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*2}=\frac{-10}{4} =-2+1/2 $
| 3x^2+27x-4.5=0 | | 3x-(5x+16)=3-(8x-4) | | (4–u)(2u+7)=0 | | 4+5r-2=8r+4-5r | | 4x+5/7=x+2/3 | | -5t^2+30t+30=0 | | 3x^2+27x+4.5=0 | | (4x)/(3)-x=(x)/(15)-(12)/(5) | | 3(m-10)+2(m-29)=2 | | 15-1/2(2s+10)=-2s-12 | | 15p+8=13+4p | | 10v-5=15 | | 6x8=40 | | X²+6x+9=O | | 11n+8-16n=4n+7-8n | | x/7x+20=x-10 | | 7x+7=12+6x | | 2+8-x=-24= | | x/3=12/15 | | X÷4+3=2+x÷3 | | (4c+6)=(10c-10) | | 3w-w=40 | | 11+1-x=0 | | -w+11=28 | | A=10w | | 9(3x-16)+15=6-24 | | 7x+8/6=4x+9/5 | | 0=-16t^-16t+180 | | 3x-2/4=2x+1/3 | | 0=-16^-16t+180 | | 5t-7t=t+3 | | 8x-9=4-6x |