If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+20z=0
a = 2; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·2·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*2}=\frac{-40}{4} =-10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*2}=\frac{0}{4} =0 $
| 1(2/5)y=1(3/10) | | a=0.5(19)(26) | | 0.15=6/30+x | | 57+7x=183 | | 5(x-1)+16(2x+3)=3(2x-7( | | 0.5/x=2.5/3.5 | | 4-2(x-3)=x-5(x+1) | | 8/12=20/p | | t/10=6/25 | | s^3+4s^2+13s=0 | | 12b+6b²=0 | | 5m-10+(-5)=15-(-10) | | 4(1/2x+22-10)=1 | | 1/2x+22-10=1 | | 8+4=2x-1 | | 3x/2+7=6x-1 | | 5m+1=-10119 | | -(-x-3)=-x+2-(3-x) | | 3/4(1/4x+8)-1/2x+2=3/8(4-x)-1/4x | | 1-3(x-7)=-(-x+5)-3-x | | 6x2+49x−45=0 | | 6x^2+49x−45=0 | | 1-3-(x-7)=-(-x+5)-3-x | | 2x²−17=81 | | -5+1x=1-6+2x | | 4x÷3+9x÷3=10 | | F(x)=-2x^2(x-8)^6(x-4)^3 | | −4x+2=6x+12 | | −4m+2=6m+12 | | 5(2g+3)=7 | | X-13((x+8)=196 | | (X-13)(x+8=196 |