If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+8z=0
a = 2; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*2}=\frac{-16}{4} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*2}=\frac{0}{4} =0 $
| 4(2x+1)-12x=-4x+4 | | (3x+-5)+(2x+1)=3 | | 2f+3=21 | | 24x+8x^2=0 | | 0.3y=10/5 | | 8=12y | | e/7+8=9 | | u/9=5/13 | | d/5+3=15 | | 120=9000/12*x | | 4x-60=6 | | 3c+3=21 | | 1/2(16+12r)=2r+10 | | 18-18n=-54 | | 8x-23=x+17 | | 7x-(3×+5)-8=1/2(8×+20)-23 | | 2(2y-3)=2 | | -5w=10/3 | | 3h−7=2 | | 5-t-t=1 | | 2x-8x=x+17 | | 6-4(2+8x)=27-3x | | 2/7x=38+16 | | 46/7+y=51/4 | | 9g+-4=20 | | 6/7+q=1/4 | | 5j+3=43 | | 0=4−f | | 6t^2+16t+8=0 | | 9g+-4=2 | | 4.6/7+q=5.1/4 | | q=10+65 |