3(-1/4k+3)=1/4k

Simple and best practice solution for 3(-1/4k+3)=1/4k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(-1/4k+3)=1/4k equation:



3(-1/4k+3)=1/4k
We move all terms to the left:
3(-1/4k+3)-(1/4k)=0
Domain of the equation: 4k+3)!=0
k∈R
Domain of the equation: 4k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
3(-1/4k+3)-(+1/4k)=0
We multiply parentheses
-3k-(+1/4k)+9=0
We get rid of parentheses
-3k-1/4k+9=0
We multiply all the terms by the denominator
-3k*4k+9*4k-1=0
Wy multiply elements
-12k^2+36k-1=0
a = -12; b = 36; c = -1;
Δ = b2-4ac
Δ = 362-4·(-12)·(-1)
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{78}}{2*-12}=\frac{-36-4\sqrt{78}}{-24} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{78}}{2*-12}=\frac{-36+4\sqrt{78}}{-24} $

See similar equations:

| 14w+5=19 | | 68+y+8=180 | | -6n-20=12 | | 2x+(2x*2+8)=96 | | 3(x+1)-5=3x+-2 | | -6-20=-2n+4(1-3 | | 3x+12=94 | | 5y-12=3y+2 | | 7y+4•8=8-5y+132 | | 3(x+4)-8=25 | | 12-5h=h1+6 | | 7-3y=-9 | | x/3=5/4-1 | | 6h-4h+2=8 | | 14x^2-4x+14=6x^2 | | 330=2(100)(2w) | | -9=3(m-5)-1m | | 2(v-16)+11=13 | | 0=(21-2x)*(29.7-2x)(x) | | 13/20+x=40 | | x^2+27x-96=0 | | 330=2(100)2w | | 19-2t=-t | | 60+6p=6 | | -19k-5=-20k | | 6x-10=1x+4x | | 50+6i=20+8i | | 9s-7=-71+s | | -(8r-6)-7=-(6r+1) | | 156=-n-9(1+6n | | 4x-101=49-6x | | 5(x-5)=x(24-4) |

Equations solver categories