3(0.5x-4)=(3)/(2)x-12

Simple and best practice solution for 3(0.5x-4)=(3)/(2)x-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(0.5x-4)=(3)/(2)x-12 equation:



3(0.5x-4)=(3)/(2)x-12
We move all terms to the left:
3(0.5x-4)-((3)/(2)x-12)=0
Domain of the equation: 2x-12)!=0
x∈R
We multiply parentheses
0x-(3/2x-12)-12=0
We get rid of parentheses
0x-3/2x+12-12=0
We multiply all the terms by the denominator
0x*2x+12*2x-12*2x-3=0
Wy multiply elements
0x^2+24x-24x-3=0
We add all the numbers together, and all the variables
x^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| 9x-15+3x+3=180 | | 12-v/3=15 | | 9u-70=120 | | 3x-18=5x+14 | | 56-30=4y | | |2x+4|-5=19 | | x−3=−27. | | 40-30=4y | | 3(t-60)=99 | | 40-56=4x | | (x-3)(x-3)=-4x | | 21-6p=-33 | | 6x+3(4-8x)=102 | | 3x+3+9x-15=180 | | -2=(3)(2)/2=b | | 14a+6a=40 | | 20+1/4p=44 | | 8+6b=8(1-7b) | | 24-36=2x | | 1/2x^2-1=39 | | 6n+16=7(n+2)-3 | | 32*4=g | | 8x+5=28x=7 | | Z+8-24=2x | | 103+88+72+x=180 | | m/7+9=21 | | 17=s-15 | | 140=6x+7x+10 | | x+14x-12=0 | | 6(m+3)=2m+58 | | 27-9y=0 | | 27=4x+4x+3 |

Equations solver categories