If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(1 + 2E) * E = 7 Reorder the terms for easier multiplication: 3E(1 + 2E) = 7 (1 * 3E + 2E * 3E) = 7 (3E + 6E2) = 7 Solving 3E + 6E2 = 7 Solving for variable 'E'. Reorder the terms: -7 + 3E + 6E2 = 7 + -7 Combine like terms: 7 + -7 = 0 -7 + 3E + 6E2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -1.166666667 + 0.5E + E2 = 0 Move the constant term to the right: Add '1.166666667' to each side of the equation. -1.166666667 + 0.5E + 1.166666667 + E2 = 0 + 1.166666667 Reorder the terms: -1.166666667 + 1.166666667 + 0.5E + E2 = 0 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + 0.5E + E2 = 0 + 1.166666667 0.5E + E2 = 0 + 1.166666667 Combine like terms: 0 + 1.166666667 = 1.166666667 0.5E + E2 = 1.166666667 The E term is 0.5E. Take half its coefficient (0.25). Square it (0.0625) and add it to both sides. Add '0.0625' to each side of the equation. 0.5E + 0.0625 + E2 = 1.166666667 + 0.0625 Reorder the terms: 0.0625 + 0.5E + E2 = 1.166666667 + 0.0625 Combine like terms: 1.166666667 + 0.0625 = 1.229166667 0.0625 + 0.5E + E2 = 1.229166667 Factor a perfect square on the left side: (E + 0.25)(E + 0.25) = 1.229166667 Calculate the square root of the right side: 1.108677891 Break this problem into two subproblems by setting (E + 0.25) equal to 1.108677891 and -1.108677891.Subproblem 1
E + 0.25 = 1.108677891 Simplifying E + 0.25 = 1.108677891 Reorder the terms: 0.25 + E = 1.108677891 Solving 0.25 + E = 1.108677891 Solving for variable 'E'. Move all terms containing E to the left, all other terms to the right. Add '-0.25' to each side of the equation. 0.25 + -0.25 + E = 1.108677891 + -0.25 Combine like terms: 0.25 + -0.25 = 0.00 0.00 + E = 1.108677891 + -0.25 E = 1.108677891 + -0.25 Combine like terms: 1.108677891 + -0.25 = 0.858677891 E = 0.858677891 Simplifying E = 0.858677891Subproblem 2
E + 0.25 = -1.108677891 Simplifying E + 0.25 = -1.108677891 Reorder the terms: 0.25 + E = -1.108677891 Solving 0.25 + E = -1.108677891 Solving for variable 'E'. Move all terms containing E to the left, all other terms to the right. Add '-0.25' to each side of the equation. 0.25 + -0.25 + E = -1.108677891 + -0.25 Combine like terms: 0.25 + -0.25 = 0.00 0.00 + E = -1.108677891 + -0.25 E = -1.108677891 + -0.25 Combine like terms: -1.108677891 + -0.25 = -1.358677891 E = -1.358677891 Simplifying E = -1.358677891Solution
The solution to the problem is based on the solutions from the subproblems. E = {0.858677891, -1.358677891}
| 5n+1p=475 | | 1/10n-5=15 | | 7p^2=-8 | | 3(2x-1)-(3x+2)=8 | | w/8+3/x=3 | | 12-6x/5x-10 | | 3x-5=8x+15 | | -4a/5=30 | | 5+2(2*7)=0 | | 35x=70 | | 4x(y)=12.5 | | 3x+2(x-1)=3 | | 2537567+756858477= | | c=2(3.14)(7.83) | | 2d-8=-18 | | 7j-9=47 | | 15.66/2= | | 15.662= | | 4b^2+16b+7=-8 | | 4t=-16 | | 2b-5=10n-b | | a=3.14(15.66) | | 3x^3+x^2=10x | | f+2=-6 | | 3y-4=3 | | 3x^3-27x+24=0 | | 4+r=-5 | | -1+-2x=3+2x | | 5a+2=3a+6 | | 63-3x=2x+10 | | (3/4)x+5 | | 2n^2=132 |