3(1x+5)=1/3x-1

Simple and best practice solution for 3(1x+5)=1/3x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(1x+5)=1/3x-1 equation:



3(1x+5)=1/3x-1
We move all terms to the left:
3(1x+5)-(1/3x-1)=0
Domain of the equation: 3x-1)!=0
x∈R
We add all the numbers together, and all the variables
3(x+5)-(1/3x-1)=0
We multiply parentheses
3x-(1/3x-1)+15=0
We get rid of parentheses
3x-1/3x+1+15=0
We multiply all the terms by the denominator
3x*3x+1*3x+15*3x-1=0
Wy multiply elements
9x^2+3x+45x-1=0
We add all the numbers together, and all the variables
9x^2+48x-1=0
a = 9; b = 48; c = -1;
Δ = b2-4ac
Δ = 482-4·9·(-1)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-6\sqrt{65}}{2*9}=\frac{-48-6\sqrt{65}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+6\sqrt{65}}{2*9}=\frac{-48+6\sqrt{65}}{18} $

See similar equations:

| 3x/5.5-3=0 | | 3x/5.5-(3)=0 | | 111=14a= | | 12x+1=3(4x-1) | | F(x)=2x/3-4 | | 45=3m | | 5/6a+25=50 | | -2x+17=12-x | | 4y+14=86-5y | | x+(88+x)=180 | | 5.16=4e= | | 12x44=-100 | | 9x+3=-3x-12 | | n-1.39=0.6 | | -a/0.6−1.3=2.7 | | g+0.8=2 | | -20=8z-5z | | 2(x-9)=102x-18=102x-18+18=10+182x=282x/2=28/2 | | 2(x-9)=102x-18=102x-18+18=10+182x=282x/2=28/2x=14 | | C(x)=25x | | 1.5-z/0.4=7.75 | | 5^x+5^x^+1=30 | | 3x/11/2=3 | | r÷ 5 = 9/10 | | –j−3=–8j−3 | | r÷ 5 = 910 | | h8+ 32=35 | | 9u+13=76 | | 13=3-56a | | 18=2/3h=12 | | 3(x-1)^2+10=85 | | 12x+1=3(4x–1) |

Equations solver categories