3(2-x)(x+2)=x2

Simple and best practice solution for 3(2-x)(x+2)=x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2-x)(x+2)=x2 equation:



3(2-x)(x+2)=x2
We move all terms to the left:
3(2-x)(x+2)-(x2)=0
We add all the numbers together, and all the variables
3(-1x+2)(x+2)-x2=0
We add all the numbers together, and all the variables
-1x^2+3(-1x+2)(x+2)=0
We multiply parentheses ..
-1x^2+3(-1x^2-2x+2x+4)=0
We multiply parentheses
-1x^2-3x^2-6x+6x+12=0
We add all the numbers together, and all the variables
-4x^2+12=0
a = -4; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-4)·12
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-4}=\frac{0-8\sqrt{3}}{-8} =-\frac{8\sqrt{3}}{-8} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-4}=\frac{0+8\sqrt{3}}{-8} =\frac{8\sqrt{3}}{-8} =\frac{\sqrt{3}}{-1} $

See similar equations:

| -9=-3+2u | | 8(b+11)-3=-11 | | -1/2-2/5y=2/3 | | 123x-100x+43875=45450-200x | | 5/9(f-32)=13C | | 12x-20=5x | | 5a+a=360 | | 3v-16=32 | | 8y=16-4y=-12 | | 6=7w+8w+2 | | 5(8h+3=) | | 3a+a=360 | | 9x+15=-3(x+3) | | 4h+5h=63h= | | 7h-(4h-3)=2h+17 | | x-1/3+2-x/2=0 | | -5-4x=-x+19 | | (1/4)(43+63+57+x)=55 | | 5x+3984902=1 | | 6(6t-3=) | | X/9+x/9=2/3 | | -23=-7x+5 | | 2x-8=2+3x-18 | | 74x=350+30x | | 7v-6/5=-4/5v-1/3 | | (8y=+4)=2(y-1) | | 4.9t^2+14.5t=0 | | 0.4(3.2x+2-x=2x+1.8 | | (9^1-9x)=(9^7x-3) | | 4(3w+1)/5=3 | | 7/3u-5=-2/5u+7/3 | | -6=u=22 |

Equations solver categories