3(2d-1)=4d(d-2)+5

Simple and best practice solution for 3(2d-1)=4d(d-2)+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2d-1)=4d(d-2)+5 equation:



3(2d-1)=4d(d-2)+5
We move all terms to the left:
3(2d-1)-(4d(d-2)+5)=0
We multiply parentheses
6d-(4d(d-2)+5)-3=0
We calculate terms in parentheses: -(4d(d-2)+5), so:
4d(d-2)+5
We multiply parentheses
4d^2-8d+5
Back to the equation:
-(4d^2-8d+5)
We get rid of parentheses
-4d^2+6d+8d-5-3=0
We add all the numbers together, and all the variables
-4d^2+14d-8=0
a = -4; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·(-4)·(-8)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{17}}{2*-4}=\frac{-14-2\sqrt{17}}{-8} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{17}}{2*-4}=\frac{-14+2\sqrt{17}}{-8} $

See similar equations:

| 2(x-5)=6. | | (t+10)(t+20)+t=180 | | 3(x+2)=18. | | 11/2x=11/4 | | –5u+–4u+3u+10u−–5u=–9 | | 44=x-7 | | 17c-15c+4c-18c+13c=-15 | | 3(2-6m)=(-15)+3m+6 | | 7n+n-4n-3n=4 | | 6x+9+3+22x=180 | | 6x+9=3+22x | | 9r^2-10r+3=0 | | f-8/9=5/9​ | | (-9k+8)(6k-7)=0 | | -2(x-3)+5=15 | | (-5/12x)+5=(-12/5x)+60 | | 5-2x=49 | | –10a+–4a−–12a=–2 | | 12x+1=9x-13 | | -1+2x-4x=6+x+2 | | 4x+11=2x−7 | | -94+(14-4x)=180 | | X+14x=27 | | 16b-11b=20 | | −t/4=−3πt= | | 10m^2+20m=0 | | 19x−17x+3x−4x=13 | | -1=-8+b | | x2+33=0 | | x^2+21=-10x-3x2+21=−10x−3 | | -4(x-4)=92 | | 1-6x+5x^2=0 |

Equations solver categories