3(2k-5)+24=k(3k+7)

Simple and best practice solution for 3(2k-5)+24=k(3k+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2k-5)+24=k(3k+7) equation:



3(2k-5)+24=k(3k+7)
We move all terms to the left:
3(2k-5)+24-(k(3k+7))=0
We multiply parentheses
6k-(k(3k+7))-15+24=0
We calculate terms in parentheses: -(k(3k+7)), so:
k(3k+7)
We multiply parentheses
3k^2+7k
Back to the equation:
-(3k^2+7k)
We add all the numbers together, and all the variables
6k-(3k^2+7k)+9=0
We get rid of parentheses
-3k^2+6k-7k+9=0
We add all the numbers together, and all the variables
-3k^2-1k+9=0
a = -3; b = -1; c = +9;
Δ = b2-4ac
Δ = -12-4·(-3)·9
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{109}}{2*-3}=\frac{1-\sqrt{109}}{-6} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{109}}{2*-3}=\frac{1+\sqrt{109}}{-6} $

See similar equations:

| 10x-23+90+90+106=360 | | y=32^0-2+2 | | 0.59x+12=1.19x | | (7x-32)=(5x-27)=(9x-8) | | 3(x=3)=13 | | -3k-5k=-21 | | 10+4n–6+2n=16 | | -81=7b+2b | | 7x-32=5x-27=9x-8 | | 52=-13a | | (4/5)x+8=12 | | -12=-5t+3t | | -6d-1=47 | | 3k-9=6k-225 | | Aw^2=9w2=9 | | 5=h^2=8h+12 | | 2(x-7)=1) | | -28=-10a+3a | | m–4+ 6=3 | | 4x^-16x=0 | | 3w+4w=-42 | | 9(x-4)=-10(x+21/3) | | 10+3(4x+1)-4x=-3 | | 3(q-7)=-6 | | 7x+1=12(2x-7) | | 3.7g+9=1.7g+21 | | 3x-(7x+12)=-4 | | 75=6c+9 | | (6x-45)=180 | | 7+0.8x=0.9x | | 17.5=(b)(b+2) | | (2a-3)/(3a-4)=½ |

Equations solver categories