3(2m-1)+5=6m(m+1)

Simple and best practice solution for 3(2m-1)+5=6m(m+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2m-1)+5=6m(m+1) equation:



3(2m-1)+5=6m(m+1)
We move all terms to the left:
3(2m-1)+5-(6m(m+1))=0
We multiply parentheses
6m-(6m(m+1))-3+5=0
We calculate terms in parentheses: -(6m(m+1)), so:
6m(m+1)
We multiply parentheses
6m^2+6m
Back to the equation:
-(6m^2+6m)
We add all the numbers together, and all the variables
6m-(6m^2+6m)+2=0
We get rid of parentheses
-6m^2+6m-6m+2=0
We add all the numbers together, and all the variables
-6m^2+2=0
a = -6; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-6)·2
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-6}=\frac{0-4\sqrt{3}}{-12} =-\frac{4\sqrt{3}}{-12} =-\frac{\sqrt{3}}{-3} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-6}=\frac{0+4\sqrt{3}}{-12} =\frac{4\sqrt{3}}{-12} =\frac{\sqrt{3}}{-3} $

See similar equations:

| a+10=6a-4 | | (5x+3)+82=180 | | 5(3x-2)-4(2x-5)=52 | | 8n+-30=5n+6 | | Y=x2–3x–1 | | 21=3x+3x-3 | | 180=16x+22+134 | | 14+13n=1 | | h/2+5=4 | | 3x-24=18x+6 | | m/2-1=3 | | 3x(4x+15)=127 | | 19+14f=5 | | 12+3w=6 | | 19+8k=3 | | 52c+10)=500 | | 8(x−5)=12(4x−1)+12 | | -23=x-6x+2 | | -11=7+f | | 2x-4(x-2)=-6+5x-28 | | 5x+35=8x-19 | | 5w+w=16 | | 2-3(w+4)=20 | | 13x+15=19x-15 | | k(k-6)=0 | | -8=-8q+8 | | (3x-2)(4x+6)=0 | | 2g-10=4 | | 6x-7(12)=-20 | | 8x+4=3x^2-0.75 | | -5y+2y=7 | | t/6+1=-2 |

Equations solver categories