3(2n+3)=9n(n-3)

Simple and best practice solution for 3(2n+3)=9n(n-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2n+3)=9n(n-3) equation:



3(2n+3)=9n(n-3)
We move all terms to the left:
3(2n+3)-(9n(n-3))=0
We multiply parentheses
6n-(9n(n-3))+9=0
We calculate terms in parentheses: -(9n(n-3)), so:
9n(n-3)
We multiply parentheses
9n^2-27n
Back to the equation:
-(9n^2-27n)
We get rid of parentheses
-9n^2+6n+27n+9=0
We add all the numbers together, and all the variables
-9n^2+33n+9=0
a = -9; b = 33; c = +9;
Δ = b2-4ac
Δ = 332-4·(-9)·9
Δ = 1413
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1413}=\sqrt{9*157}=\sqrt{9}*\sqrt{157}=3\sqrt{157}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{157}}{2*-9}=\frac{-33-3\sqrt{157}}{-18} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{157}}{2*-9}=\frac{-33+3\sqrt{157}}{-18} $

See similar equations:

| h/6+78=88 | | 3x-8(-5x-23)=12 | | 3x-11+5x-29=180 | | 5n–18=2 | | 4x+7x+19=3(12)-4+(5(16))-5 | | d+26/6=7 | | Y/4=y/5 | | 180=72x+4 | | 3x-40x-184=12 | | 46+2j=88 | | t/2+7=11 | | -15=u/5+5 | | 0.5(m+4)=3)m-1) | | 5.4x=5.5(3x-12) | | v/4+10=12 | | 2,5x=3=-0,5 | | )3(c-2)=2(c-6) | | 12(x+3-3x=117 | | 8x-(x+1)=2(3x-1) | | 6-4y=-26 | | 5x-29+3x-11=18 | | 5x-29+3x-11+18=180 | | 2x-10+2x=4 | | s+0.2=65,000 | | -y/2=-49 | | v+(-8)=6 | | |7x|-7=42 | | 18=2s+8 | | 1/2x+6=21 | | 5n-12=6 | | d.2d+4=10+2.5d2d+4=10+2.5d | | 2x-3=x+7+3x |

Equations solver categories