3(2x+1)=17-2x(x-1)

Simple and best practice solution for 3(2x+1)=17-2x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x+1)=17-2x(x-1) equation:



3(2x+1)=17-2x(x-1)
We move all terms to the left:
3(2x+1)-(17-2x(x-1))=0
We multiply parentheses
6x-(17-2x(x-1))+3=0
We calculate terms in parentheses: -(17-2x(x-1)), so:
17-2x(x-1)
determiningTheFunctionDomain -2x(x-1)+17
We multiply parentheses
-2x^2+2x+17
Back to the equation:
-(-2x^2+2x+17)
We get rid of parentheses
2x^2-2x+6x-17+3=0
We add all the numbers together, and all the variables
2x^2+4x-14=0
a = 2; b = 4; c = -14;
Δ = b2-4ac
Δ = 42-4·2·(-14)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{2}}{2*2}=\frac{-4-8\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{2}}{2*2}=\frac{-4+8\sqrt{2}}{4} $

See similar equations:

| 1.8x=8 | | y-(5/6*y)=-3/7(y+1/2) | | 2x-3×+×-18=6 | | 9x+1=9(x+1) | | 9x+1=9(x+1 | | 6x+5=-3+14 | | 12r-37=4r+35 | | X×8x=14×26 | | ¼d=3 | | 6g-25=23-2g | | 6-4(5x-5)=-6 | | 5-8t=-67 | | 7q-14=4 | | 10x+18=2x+146 | | 12x-13=2x+277 | | X⁵-y⁵=33 | | 31-(x/2)=62-2x | | (9/4-x/2)×4=(-5x/2+7/4)×4 | | y^2-2y+19=5 | | 13y=11(y+7) | | 1/8t−1/32+1/2t=1/2+t | | 2xx10=32 | | X=15x-168 | | 5(2x+4)=130 | | ?x?x?=294 | | 7x+5-3×=3(5×+2+3×-4) | | 6(z+5)=4(z+4) | | 7(c+7)=4(c−5) | | 5(a−6)=3(a−9) | | 7(5+b)=4(b+8) | | 5x-4=7(2x-1)(x-2) | | 5(−8+c)=4(−3+c) |

Equations solver categories