If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(2x + 1 + -2(2x + -1)) + 4 = 2(1 + 2(3 + -1x)) Reorder the terms: 3(2x + 1 + -2(-1 + 2x)) + 4 = 2(1 + 2(3 + -1x)) 3(2x + 1 + (-1 * -2 + 2x * -2)) + 4 = 2(1 + 2(3 + -1x)) 3(2x + 1 + (2 + -4x)) + 4 = 2(1 + 2(3 + -1x)) Reorder the terms: 3(1 + 2 + 2x + -4x) + 4 = 2(1 + 2(3 + -1x)) Combine like terms: 1 + 2 = 3 3(3 + 2x + -4x) + 4 = 2(1 + 2(3 + -1x)) Combine like terms: 2x + -4x = -2x 3(3 + -2x) + 4 = 2(1 + 2(3 + -1x)) (3 * 3 + -2x * 3) + 4 = 2(1 + 2(3 + -1x)) (9 + -6x) + 4 = 2(1 + 2(3 + -1x)) Reorder the terms: 9 + 4 + -6x = 2(1 + 2(3 + -1x)) Combine like terms: 9 + 4 = 13 13 + -6x = 2(1 + 2(3 + -1x)) 13 + -6x = 2(1 + (3 * 2 + -1x * 2)) 13 + -6x = 2(1 + (6 + -2x)) Combine like terms: 1 + 6 = 7 13 + -6x = 2(7 + -2x) 13 + -6x = (7 * 2 + -2x * 2) 13 + -6x = (14 + -4x) Solving 13 + -6x = 14 + -4x Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '4x' to each side of the equation. 13 + -6x + 4x = 14 + -4x + 4x Combine like terms: -6x + 4x = -2x 13 + -2x = 14 + -4x + 4x Combine like terms: -4x + 4x = 0 13 + -2x = 14 + 0 13 + -2x = 14 Add '-13' to each side of the equation. 13 + -13 + -2x = 14 + -13 Combine like terms: 13 + -13 = 0 0 + -2x = 14 + -13 -2x = 14 + -13 Combine like terms: 14 + -13 = 1 -2x = 1 Divide each side by '-2'. x = -0.5 Simplifying x = -0.5
| f(x)=x^3-5x^2-6x-55 | | 11x+6y=180 | | 49x^2+13y^2+294x+52y=144 | | -12x+8y=-6 | | 2c+8y=20 | | 25x+5=5 | | 8x^2-8x-3+-4x-2= | | 4b^2-14x=0 | | 4x^2-3x+2+-4x^2+3x-6= | | X^2-2x*2=0 | | 7x+24=3x+8 | | 4x+9+3x=90 | | 4(5-2X)=44 | | -2x-11=2x+9 | | 5a^2-2a-8+a^2+6a-3= | | 3x^2+5x-2+-2x^2+3x-7= | | -x-11=3x+1 | | ln(2x-6)=-3 | | (4x^2+3x+5)+(-4x^2+3x-5)= | | 2(a-1)=3(2+1) | | 2x+51=6x-9 | | (Y^2+3x+5)+(-4x^2+3x-5)= | | u=21n+65 | | 7+42x=21x+43 | | Abs(5x-15)=10 | | (2y^2-y+3)+(3y^2+y+4)= | | (6x^2+2x-2)+(-x^2-4x+1)= | | 15x+13=-7 | | -x+16=x+4 | | 100+4=25 | | (3x^2+5x-2)+(-7x^2+5x-4)= | | -5(u+1)=-2u-8 |