If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(2x-1)-11=-2x(3-x)
We move all terms to the left:
3(2x-1)-11-(-2x(3-x))=0
We add all the numbers together, and all the variables
3(2x-1)-(-2x(-1x+3))-11=0
We multiply parentheses
6x-(-2x(-1x+3))-3-11=0
We calculate terms in parentheses: -(-2x(-1x+3)), so:We add all the numbers together, and all the variables
-2x(-1x+3)
We multiply parentheses
2x^2-6x
Back to the equation:
-(2x^2-6x)
6x-(2x^2-6x)-14=0
We get rid of parentheses
-2x^2+6x+6x-14=0
We add all the numbers together, and all the variables
-2x^2+12x-14=0
a = -2; b = 12; c = -14;
Δ = b2-4ac
Δ = 122-4·(-2)·(-14)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{2}}{2*-2}=\frac{-12-4\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{2}}{2*-2}=\frac{-12+4\sqrt{2}}{-4} $
| 4r+5=-10r-9 | | 5+6y+6-4=6 | | 10=x+5+3 | | 20^x+9=55 | | 3x+4=7x-x-17 | | 6=t-15 | | 1/2(2p+8)=−p+5 | | 5t+14=19 | | 5=6y=6-4=6 | | 2(2x+9)=7x+6 | | 38.2=4x | | 12-r=2(r-4)-10 | | 14=d-8 | | 4(v-3)=-2(6-2v) | | x+6.5=-4.5= | | 5+b/4=1 | | 9+–1m=7 | | 1.6w=72 | | 3(2x-1)-11=2x(3-x) | | 3x+15=675 | | 3(2x-1)-11=2x(3-x | | 2x^2-30x+25=0 | | p+1/7=6/7 | | 2(x-1)=4x-50 | | x+50+115+45+85=360 | | 0.97+2.3-8.2f=6.21+1.6f | | -2.7x=5.4 | | 10^5x=10000 | | 12=4(x+6) | | 5|6y-6|-4=6 | | 8a=113 | | 12.22=y-7.5 |