3(2x-9)-3=3(x-4)+9

Simple and best practice solution for 3(2x-9)-3=3(x-4)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x-9)-3=3(x-4)+9 equation:


Simplifying
3(2x + -9) + -3 = 3(x + -4) + 9

Reorder the terms:
3(-9 + 2x) + -3 = 3(x + -4) + 9
(-9 * 3 + 2x * 3) + -3 = 3(x + -4) + 9
(-27 + 6x) + -3 = 3(x + -4) + 9

Reorder the terms:
-27 + -3 + 6x = 3(x + -4) + 9

Combine like terms: -27 + -3 = -30
-30 + 6x = 3(x + -4) + 9

Reorder the terms:
-30 + 6x = 3(-4 + x) + 9
-30 + 6x = (-4 * 3 + x * 3) + 9
-30 + 6x = (-12 + 3x) + 9

Reorder the terms:
-30 + 6x = -12 + 9 + 3x

Combine like terms: -12 + 9 = -3
-30 + 6x = -3 + 3x

Solving
-30 + 6x = -3 + 3x

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-3x' to each side of the equation.
-30 + 6x + -3x = -3 + 3x + -3x

Combine like terms: 6x + -3x = 3x
-30 + 3x = -3 + 3x + -3x

Combine like terms: 3x + -3x = 0
-30 + 3x = -3 + 0
-30 + 3x = -3

Add '30' to each side of the equation.
-30 + 30 + 3x = -3 + 30

Combine like terms: -30 + 30 = 0
0 + 3x = -3 + 30
3x = -3 + 30

Combine like terms: -3 + 30 = 27
3x = 27

Divide each side by '3'.
x = 9

Simplifying
x = 9

See similar equations:

| (2i+2)(4i-5)=0 | | 0.3+0.5x=2.3+x | | 144=3x+47+7x-13 | | 10=6+lnx | | -3(2x)= | | -560+(-40)=-600 | | -5n-4=-94 | | -5y+15=6 | | -3(5p+4)-2(4-11p)=3(9+2p) | | -5+15=6 | | 6x^2+11a+2=4 | | X=-120+59 | | 18a^2-10a+27a-15=0 | | -2a+3-a=0 | | 9=3a | | 4-2x-3=17 | | 3x-6y-7x+3y= | | 2z-9=21 | | 9(y+9)= | | -d=-2d+7 | | 4+2x+3=17 | | C+28=c+65 | | ((30)180)+((36)180)+((((8)9)6)36)+((((8)5)6)36)+((((8)7)7)36)+(18(7))+8500= | | 19+4(6c-1)= | | 4+2x-3=17 | | 8x-9=6x+29 | | (6i+5)-(-10i-5)=0 | | 4(3x-3)-2=4(x-4)+42 | | 3y-6y+2=8y+6-5 | | 3x+4/2=5/6 | | 8x^3-120=0 | | -8(3x+9)=15-7x |

Equations solver categories