3(2x2)-4(x+6)=3x+8+x

Simple and best practice solution for 3(2x2)-4(x+6)=3x+8+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x2)-4(x+6)=3x+8+x equation:



3(2x^2)-4(x+6)=3x+8+x
We move all terms to the left:
3(2x^2)-4(x+6)-(3x+8+x)=0
We add all the numbers together, and all the variables
32x^2-4(x+6)-(4x+8)=0
We multiply parentheses
32x^2-4x-(4x+8)-24=0
We get rid of parentheses
32x^2-4x-4x-8-24=0
We add all the numbers together, and all the variables
32x^2-8x-32=0
a = 32; b = -8; c = -32;
Δ = b2-4ac
Δ = -82-4·32·(-32)
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{65}}{2*32}=\frac{8-8\sqrt{65}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{65}}{2*32}=\frac{8+8\sqrt{65}}{64} $

See similar equations:

| (−4b−10)/8=3 | | {11}{n}={8}{5}n11​ =58​ | | −4b−10/8=3 | | 2y^2+6y=184 | | 2q–7=15 | | 3y^2+2y=184 | | 2q−7=15 | | (-14/5)x()=-2 | | 4t+1=-5t-89 | | 1.2(x+-2)=2-x | | (-7.5)x()=3 | | -3.1x+7-7.4x=1.5x6(x-1.5) | | 4.8g+8=1.8g+20 | | 11-2c=17 | | 11-2c=-17 | | 5c-4=3c-8 | | K={x|x≤20,xЄ | | 5x–x–7=29 | | 8+5y+8−5=11 | | 3g+6=18g=4 | | 19.37=3.77+4p | | 6x^2+45=141 | | -5x+12x=65 | | -1m+9=3m-7 | | u/2+1=3 | | -5x+12x=65=180 | | 3.8(5.4k)=47.196 | | (Y+1)+2=4y | | 5+y=2(y+10) | | y+14y+49y=0;y(0)=-1;y(0)=2 | | z/2-3=4.3 | | 7-1n=-3n+5 |

Equations solver categories