3(3a-19)=(a-5)(a-3)

Simple and best practice solution for 3(3a-19)=(a-5)(a-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(3a-19)=(a-5)(a-3) equation:



3(3a-19)=(a-5)(a-3)
We move all terms to the left:
3(3a-19)-((a-5)(a-3))=0
We multiply parentheses
9a-((a-5)(a-3))-57=0
We multiply parentheses ..
-((+a^2-3a-5a+15))+9a-57=0
We calculate terms in parentheses: -((+a^2-3a-5a+15)), so:
(+a^2-3a-5a+15)
We get rid of parentheses
a^2-3a-5a+15
We add all the numbers together, and all the variables
a^2-8a+15
Back to the equation:
-(a^2-8a+15)
We add all the numbers together, and all the variables
9a-(a^2-8a+15)-57=0
We get rid of parentheses
-a^2+9a+8a-15-57=0
We add all the numbers together, and all the variables
-1a^2+17a-72=0
a = -1; b = 17; c = -72;
Δ = b2-4ac
Δ = 172-4·(-1)·(-72)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-1}{2*-1}=\frac{-18}{-2} =+9 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+1}{2*-1}=\frac{-16}{-2} =+8 $

See similar equations:

| 105+35=0.35x-35+35 | | b-91/9=104/5 | | (6x-4)(2)=10x+2 | | (4)(x-2)-(x-17)(x-4)=0 | | 48r-31=52r-79 | | 11-2x+13=18 | | 3p-5(p+2)=2(-p+3)+4 | | 4x+6=2x-38 | | (6x+3)/11=10-(3x-1)/2 | | 1/3(x+4)-3=28 | | 1.57p=-8 | | -4(3x-2)-(-x+16)=5x+8 | | x/4+3=67 | | -7x+2=-130+5x | | 40v+40=-40v-40 | | -14+2y=24 | | -10(s+4)=-21 | | 7x+3=-x+43 | | 5x-2°=6x+4° | | –30=–2(9+3z) | | 75=–5(–3–4x) | | x+4=22-x | | x-7=-7-x | | x-3/2x-4=x/x-2+2 | | 6(x+10)=60+6x | | -2(x-3)/5=4•5 | | -7/11*p=-8 | | -21=4+5v | | 1/7x+3/7=4/7-2/7x | | 80=38.12+0.25x | | 1/5f-4=1 | | 5-3x²=-22 |

Equations solver categories