3(3n2-43)=745

Simple and best practice solution for 3(3n2-43)=745 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(3n2-43)=745 equation:



3(3n^2-43)=745
We move all terms to the left:
3(3n^2-43)-(745)=0
We multiply parentheses
9n^2-129-745=0
We add all the numbers together, and all the variables
9n^2-874=0
a = 9; b = 0; c = -874;
Δ = b2-4ac
Δ = 02-4·9·(-874)
Δ = 31464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31464}=\sqrt{36*874}=\sqrt{36}*\sqrt{874}=6\sqrt{874}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{874}}{2*9}=\frac{0-6\sqrt{874}}{18} =-\frac{6\sqrt{874}}{18} =-\frac{\sqrt{874}}{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{874}}{2*9}=\frac{0+6\sqrt{874}}{18} =\frac{6\sqrt{874}}{18} =\frac{\sqrt{874}}{3} $

See similar equations:

| |5y-8|=7 | | |5y-8=7 | | 7a-3+15a+58=0 | | -37+x=-32.5 | | (X-1)(x+3)=x^2+5x-7 | | 2d=11+3d | | x(12-5)+2x=1+4x | | 7+15f=14f | | 2(4n2+17)=234 | | 2(x+8)=57.4 | | 5(4n+6)=130 | | c=5÷3 | | 5y+30=-15 | | 8(-6b+5)=-56 | | 16k^2-4(-2k^2+11k-4)=0 | | 3,330t=18 | | 9(n2+11)=180 | | 3,330÷18=t | | 22-(3c+4)=2(c+3)c | | -x^2=3x-16 | | 3,330÷t=18 | | (-4k+16k^2-4(-2k^2+11k-4))=-4 | | t÷3,330=18 | | (-4k+16k^2-4(-2k^2+11k-4)=-4 | | 6(8n-12)=168 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4))=-2 | | 18=6+4w | | m-12=2184 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4)=-2 | | 9(2n+6)=180 | | x+.2x=130 | | 5-5w=-9 |

Equations solver categories