3(4d+1)19d=6(2-d)

Simple and best practice solution for 3(4d+1)19d=6(2-d) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(4d+1)19d=6(2-d) equation:



3(4d+1)19d=6(2-d)
We move all terms to the left:
3(4d+1)19d-(6(2-d))=0
We add all the numbers together, and all the variables
3(4d+1)19d-(6(-1d+2))=0
We multiply parentheses
228d^2+57d-(6(-1d+2))=0
We calculate terms in parentheses: -(6(-1d+2)), so:
6(-1d+2)
We multiply parentheses
-6d+12
Back to the equation:
-(-6d+12)
We get rid of parentheses
228d^2+57d+6d-12=0
We add all the numbers together, and all the variables
228d^2+63d-12=0
a = 228; b = 63; c = -12;
Δ = b2-4ac
Δ = 632-4·228·(-12)
Δ = 14913
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14913}=\sqrt{9*1657}=\sqrt{9}*\sqrt{1657}=3\sqrt{1657}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{1657}}{2*228}=\frac{-63-3\sqrt{1657}}{456} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{1657}}{2*228}=\frac{-63+3\sqrt{1657}}{456} $

See similar equations:

| -3v−-2v+v−-4v+-9v=10 | | 1/2(-6^2)=x | | 5w+2w=14 | | x-3(x+5)=3x | | X+.055x=82.50 | | 3(2+-f)=-15+3f | | y-0.7=-5.88 | | -12n-17=-5 | | 3(2x+7)=27-6+6x | | 5(4d+8)=25+20d | | 7x-9=2x+14 | | (28+y)=51 | | 4^x-2.4^x=4^8 | | 36(3.14)=1.33(3.14)r | | g=6×. | | 5x+15+4x=6x-3(x+9) | | 4(2x+3)+2(3x-8)=10 | | -13=7+y/4 | | 15.75+0.06(x+3)=16.50-0.09x | | 5n+7-3n=19n=3 | | 5n+7-3n=19n$ | | x2-3x=2 | | 8−4s=-3s | | 12x^2-108x+340=0 | | 2x-1÷5=5x-11÷4 | | 4x+9,5x+2=56 | | 27x-x=31 | | 6c-69=11c+26 | | 3(4+a)=2(a-2) | | 3/4z=1/2z+12 | | 6(+7)-3n=19n=3 | | (3x+8)/(2)=16 |

Equations solver categories