If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(4p+1)=7(p+9)34p+1=7(p+9)
We move all terms to the left:
3(4p+1)-(7(p+9)34p+1)=0
We multiply parentheses
12p-(7(p+9)34p+1)+3=0
We calculate terms in parentheses: -(7(p+9)34p+1), so:We get rid of parentheses
7(p+9)34p+1
We multiply parentheses
238p^2+2142p+1
Back to the equation:
-(238p^2+2142p+1)
-238p^2+12p-2142p-1+3=0
We add all the numbers together, and all the variables
-238p^2-2130p+2=0
a = -238; b = -2130; c = +2;
Δ = b2-4ac
Δ = -21302-4·(-238)·2
Δ = 4538804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4538804}=\sqrt{4*1134701}=\sqrt{4}*\sqrt{1134701}=2\sqrt{1134701}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2130)-2\sqrt{1134701}}{2*-238}=\frac{2130-2\sqrt{1134701}}{-476} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2130)+2\sqrt{1134701}}{2*-238}=\frac{2130+2\sqrt{1134701}}{-476} $
| −5x−4=−30 | | -14v+2=30 | | –4+6r−5r=–3+2r | | -2(-4x+8)=19 | | 2y2=2 | | 26y=208 | | d/2-9=5 | | z+z+14=z+45 | | m-753=-126 | | 3(x+4)+5=-2(x-5)-3 | | 5(–8+2w)= | | 6(x+1)=-5 | | 3x2-87=0 | | 40(2x+2)=35(3x-7) | | x+0.375=0.5 | | 99x99=7 | | -7(-7x-5)=2 | | t+19+t-19=t+50 | | s/28=31 | | –4m+5/4=¼= | | 0.7=24/x | | 10=2(g+7)=5 | | 11+y=23, | | 8.48x+9=71.9104+3x | | -3m-1.1=4.9 | | -24y+18=-102 | | 2x-8+2=-22 | | 8m-41=7 | | 5÷0.2=n. | | 1.2÷y=0.4 | | 2w=2w-48 | | 5x+6+8=3x-4+2x |