3(4x-2)=8x(4x-9)

Simple and best practice solution for 3(4x-2)=8x(4x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(4x-2)=8x(4x-9) equation:



3(4x-2)=8x(4x-9)
We move all terms to the left:
3(4x-2)-(8x(4x-9))=0
We multiply parentheses
12x-(8x(4x-9))-6=0
We calculate terms in parentheses: -(8x(4x-9)), so:
8x(4x-9)
We multiply parentheses
32x^2-72x
Back to the equation:
-(32x^2-72x)
We get rid of parentheses
-32x^2+12x+72x-6=0
We add all the numbers together, and all the variables
-32x^2+84x-6=0
a = -32; b = 84; c = -6;
Δ = b2-4ac
Δ = 842-4·(-32)·(-6)
Δ = 6288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6288}=\sqrt{16*393}=\sqrt{16}*\sqrt{393}=4\sqrt{393}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{393}}{2*-32}=\frac{-84-4\sqrt{393}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{393}}{2*-32}=\frac{-84+4\sqrt{393}}{-64} $

See similar equations:

| x^2+x^2+14x+49=4x^2-28x+49 | | 11+6k=5 | | 108+2x=x | | 26b+8b-22b+b-2b+5=16 | | -19/15=d-2/3 | | 3/5-x=9/10 | | 32​b+5=20−b | | 33+8n=65 | | x-3/x=3/6 | | 8d=d-4+18 | | 2c+6=26 | | 5w+10w+(-14w)-18w+18w=-7 | | x-5=9+5 | | 576=192t-32t^2 | | 12x+4=88 | | D-4+18=8d | | 2^x^2-48=4x | | -b+17b-8b-(-15b)-(-14)=-9 | | 1/4-11/2x=3/8 | | 61=(2x-5)+x | | 3x+2x+10+4x-20=180 | | 7/8x=14/15 | | 4^2x+5=4^4x-3 | | 5/6y=1/6 | | 0.5(x−6)=9 | | x+5=4154 | | 47=4n+7 | | 18x^2+12x-720=0 | | 1/3y=1/2 | | 5t-1=7t-5= | | (2x^2-4x+4)^2=0 | | 2(y-5)=4(y+2) |

Equations solver categories