3(5x+10)+10=6x(x+10)

Simple and best practice solution for 3(5x+10)+10=6x(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(5x+10)+10=6x(x+10) equation:



3(5x+10)+10=6x(x+10)
We move all terms to the left:
3(5x+10)+10-(6x(x+10))=0
We multiply parentheses
15x-(6x(x+10))+30+10=0
We calculate terms in parentheses: -(6x(x+10)), so:
6x(x+10)
We multiply parentheses
6x^2+60x
Back to the equation:
-(6x^2+60x)
We add all the numbers together, and all the variables
15x-(6x^2+60x)+40=0
We get rid of parentheses
-6x^2+15x-60x+40=0
We add all the numbers together, and all the variables
-6x^2-45x+40=0
a = -6; b = -45; c = +40;
Δ = b2-4ac
Δ = -452-4·(-6)·40
Δ = 2985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-\sqrt{2985}}{2*-6}=\frac{45-\sqrt{2985}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+\sqrt{2985}}{2*-6}=\frac{45+\sqrt{2985}}{-12} $

See similar equations:

| 2a÷14=3a+12÷24 | | 12(8x+21)=-708 | | 2x(1/2x-6)+8x=-1.2x+7(2-2/5x)=x^2 | | 2(6t)=24-2t | | -7(-12x-25)=763 | | 11(-12x+22)=-814 | | -2=-4n-5+1n | | 13d+20=20 | | 8(-7x+20)=-456 | | D=7/5(m-3) | | 15(8x-31)=615 | | 38​ =n12 | | -7(-9x-31)=784 | | -7(-14x-34)=-1036 | | 28=r-6 | | 1.3^2x=78 | | -7(9x-16)=-896 | | 2+n-4n=-4 | | 3(0.25x)=9 | | 14(8x+10)=-756 | | 8(-10x+33)=-856 | | -765=-9(7x-20) | | 2=n-15 | | -532=-7(-10x-24) | | 22=3(x+6)-5x= | | -1230=-10(-7x-3) | | -924=-11(-10x+4) | | 6x+4x+50=360 | | 1300=10(-15x-5) | | 1.3333x=2000 | | H=-5t^2+40t+2 | | 621=9(8x-27) |

Equations solver categories