3(5x-20)=15x(x-20)

Simple and best practice solution for 3(5x-20)=15x(x-20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(5x-20)=15x(x-20) equation:



3(5x-20)=15x(x-20)
We move all terms to the left:
3(5x-20)-(15x(x-20))=0
We multiply parentheses
15x-(15x(x-20))-60=0
We calculate terms in parentheses: -(15x(x-20)), so:
15x(x-20)
We multiply parentheses
15x^2-300x
Back to the equation:
-(15x^2-300x)
We get rid of parentheses
-15x^2+15x+300x-60=0
We add all the numbers together, and all the variables
-15x^2+315x-60=0
a = -15; b = 315; c = -60;
Δ = b2-4ac
Δ = 3152-4·(-15)·(-60)
Δ = 95625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{95625}=\sqrt{5625*17}=\sqrt{5625}*\sqrt{17}=75\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(315)-75\sqrt{17}}{2*-15}=\frac{-315-75\sqrt{17}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(315)+75\sqrt{17}}{2*-15}=\frac{-315+75\sqrt{17}}{-30} $

See similar equations:

| 12=z-9 | | 9×x=126 | | 39=m+10 | | 7(5x+4)=133 | | 2x-(90x-)=180 | | 4(u+7)-6u=36 | | 3x+2=6×-118 | | 16=9x-6+7x | | sX4=20 | | 2x-(90x-)=12 | | -5x-6=6x+16 | | -5=2/17x | | 2-(2×x)=x+64 | | -8=-8y+4(y-5) | | 2x-12x(90-x)=12 | | x+42=103 | | 5(−3x+5)−5x−5=40 | | 5s-9=-4 | | 2x12x-(90-x)=12 | | 12-a=2 | | 3x–x=24 | | 5x-2/2=2x+1/2 | | 6(3+2x)=2(4-x) | | 5=-3x+41x= | | 5x^2=1/5 | | 8x+4=1.5 | | |2x-11|=17 | | -2-21.8x=-8x-(6x+1) | | 32(x+10)+29x+3(x-5)=0 | | 2.6x=3x-5 | | (X+6)×(x-6)-(x-5)^2=40-17(x-2) | | 67+x+46=180 |

Equations solver categories