3(5x-y+2z)-2(-x+y-4z)=

Simple and best practice solution for 3(5x-y+2z)-2(-x+y-4z)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(5x-y+2z)-2(-x+y-4z)= equation:


Simplifying
3(5x + -1y + 2z) + -2(-1x + y + -4z) = 0
(5x * 3 + -1y * 3 + 2z * 3) + -2(-1x + y + -4z) = 0
(15x + -3y + 6z) + -2(-1x + y + -4z) = 0
15x + -3y + 6z + (-1x * -2 + y * -2 + -4z * -2) = 0
15x + -3y + 6z + (2x + -2y + 8z) = 0

Reorder the terms:
15x + 2x + -3y + -2y + 6z + 8z = 0

Combine like terms: 15x + 2x = 17x
17x + -3y + -2y + 6z + 8z = 0

Combine like terms: -3y + -2y = -5y
17x + -5y + 6z + 8z = 0

Combine like terms: 6z + 8z = 14z
17x + -5y + 14z = 0

Solving
17x + -5y + 14z = 0

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '5y' to each side of the equation.
17x + -5y + 5y + 14z = 0 + 5y

Combine like terms: -5y + 5y = 0
17x + 0 + 14z = 0 + 5y
17x + 14z = 0 + 5y
Remove the zero:
17x + 14z = 5y

Add '-14z' to each side of the equation.
17x + 14z + -14z = 5y + -14z

Combine like terms: 14z + -14z = 0
17x + 0 = 5y + -14z
17x = 5y + -14z

Divide each side by '17'.
x = 0.2941176471y + -0.8235294118z

Simplifying
x = 0.2941176471y + -0.8235294118z

See similar equations:

| d=.7t+3 | | 150=0.08x+75 | | 4n=1.72 | | 85+m=685 | | 3x-1=4x+13 | | x^4-22x^2+1=0 | | 231-5x=40x-16 | | f(x)=9x | | Zsquared-9=0 | | t^2h^2e^5r^4snopla^2cidb=3 | | -11=m-3+7m | | -11=4x-5-2x | | 30-3x=0.66x | | 0.8728*x^2+2.6186*x*y+1.7457*y^2-1=0 | | -34=-7x+x-4 | | 2(4x-3)-2(x+4)=10-6 | | 8y-5y=24 | | -1-4b=21 | | t^2h^2e^5r^4snopla^2cidb=x | | 11+3+4w+1=7 | | d+(-3)=-7 | | 2(2x)+3x-5x= | | 5x+4=-71 | | 7x-2+3x=-82 | | 10+(.8)c-1=30 | | 15.35=z-1.84 | | Log[4](2x-2)=4 | | 3-13=-3 | | -2x(x+7)=-3x-2 | | 3X(6+7)=(3*6)+3X | | -9x+17=-28 | | 5x^2+7x=7 |

Equations solver categories