3(6z-1)2(z+3)=7(z+1)

Simple and best practice solution for 3(6z-1)2(z+3)=7(z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(6z-1)2(z+3)=7(z+1) equation:


Simplifying
3(6z + -1) * 2(z + 3) = 7(z + 1)

Reorder the terms:
3(-1 + 6z) * 2(z + 3) = 7(z + 1)

Reorder the terms:
3(-1 + 6z) * 2(3 + z) = 7(z + 1)

Reorder the terms for easier multiplication:
3 * 2(-1 + 6z)(3 + z) = 7(z + 1)

Multiply 3 * 2
6(-1 + 6z)(3 + z) = 7(z + 1)

Multiply (-1 + 6z) * (3 + z)
6(-1(3 + z) + 6z * (3 + z)) = 7(z + 1)
6((3 * -1 + z * -1) + 6z * (3 + z)) = 7(z + 1)
6((-3 + -1z) + 6z * (3 + z)) = 7(z + 1)
6(-3 + -1z + (3 * 6z + z * 6z)) = 7(z + 1)
6(-3 + -1z + (18z + 6z2)) = 7(z + 1)

Combine like terms: -1z + 18z = 17z
6(-3 + 17z + 6z2) = 7(z + 1)
(-3 * 6 + 17z * 6 + 6z2 * 6) = 7(z + 1)
(-18 + 102z + 36z2) = 7(z + 1)

Reorder the terms:
-18 + 102z + 36z2 = 7(1 + z)
-18 + 102z + 36z2 = (1 * 7 + z * 7)
-18 + 102z + 36z2 = (7 + 7z)

Solving
-18 + 102z + 36z2 = 7 + 7z

Solving for variable 'z'.

Reorder the terms:
-18 + -7 + 102z + -7z + 36z2 = 7 + 7z + -7 + -7z

Combine like terms: -18 + -7 = -25
-25 + 102z + -7z + 36z2 = 7 + 7z + -7 + -7z

Combine like terms: 102z + -7z = 95z
-25 + 95z + 36z2 = 7 + 7z + -7 + -7z

Reorder the terms:
-25 + 95z + 36z2 = 7 + -7 + 7z + -7z

Combine like terms: 7 + -7 = 0
-25 + 95z + 36z2 = 0 + 7z + -7z
-25 + 95z + 36z2 = 7z + -7z

Combine like terms: 7z + -7z = 0
-25 + 95z + 36z2 = 0

Begin completing the square.  Divide all terms by
36 the coefficient of the squared term: 

Divide each side by '36'.
-0.6944444444 + 2.638888889z + z2 = 0

Move the constant term to the right:

Add '0.6944444444' to each side of the equation.
-0.6944444444 + 2.638888889z + 0.6944444444 + z2 = 0 + 0.6944444444

Reorder the terms:
-0.6944444444 + 0.6944444444 + 2.638888889z + z2 = 0 + 0.6944444444

Combine like terms: -0.6944444444 + 0.6944444444 = 0.0000000000
0.0000000000 + 2.638888889z + z2 = 0 + 0.6944444444
2.638888889z + z2 = 0 + 0.6944444444

Combine like terms: 0 + 0.6944444444 = 0.6944444444
2.638888889z + z2 = 0.6944444444

The z term is 2.638888889z.  Take half its coefficient (1.319444445).
Square it (1.740933643) and add it to both sides.

Add '1.740933643' to each side of the equation.
2.638888889z + 1.740933643 + z2 = 0.6944444444 + 1.740933643

Reorder the terms:
1.740933643 + 2.638888889z + z2 = 0.6944444444 + 1.740933643

Combine like terms: 0.6944444444 + 1.740933643 = 2.4353780874
1.740933643 + 2.638888889z + z2 = 2.4353780874

Factor a perfect square on the left side:
(z + 1.319444445)(z + 1.319444445) = 2.4353780874

Calculate the square root of the right side: 1.560569796

Break this problem into two subproblems by setting 
(z + 1.319444445) equal to 1.560569796 and -1.560569796.

Subproblem 1

z + 1.319444445 = 1.560569796 Simplifying z + 1.319444445 = 1.560569796 Reorder the terms: 1.319444445 + z = 1.560569796 Solving 1.319444445 + z = 1.560569796 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-1.319444445' to each side of the equation. 1.319444445 + -1.319444445 + z = 1.560569796 + -1.319444445 Combine like terms: 1.319444445 + -1.319444445 = 0.000000000 0.000000000 + z = 1.560569796 + -1.319444445 z = 1.560569796 + -1.319444445 Combine like terms: 1.560569796 + -1.319444445 = 0.241125351 z = 0.241125351 Simplifying z = 0.241125351

Subproblem 2

z + 1.319444445 = -1.560569796 Simplifying z + 1.319444445 = -1.560569796 Reorder the terms: 1.319444445 + z = -1.560569796 Solving 1.319444445 + z = -1.560569796 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-1.319444445' to each side of the equation. 1.319444445 + -1.319444445 + z = -1.560569796 + -1.319444445 Combine like terms: 1.319444445 + -1.319444445 = 0.000000000 0.000000000 + z = -1.560569796 + -1.319444445 z = -1.560569796 + -1.319444445 Combine like terms: -1.560569796 + -1.319444445 = -2.880014241 z = -2.880014241 Simplifying z = -2.880014241

Solution

The solution to the problem is based on the solutions from the subproblems. z = {0.241125351, -2.880014241}

See similar equations:

| (x+b)+10x+x=c | | -6(t-7)-(t+4)=2 | | 2(1+10n)-6(1-2n)= | | (x+b)(x+b)=x*-10x+c | | 8x^2-13x+1=0 | | 3(2a+1)=(6a+1) | | 9(y+3)(y+6)= | | lg^2x-11lgx+10=0 | | 3x-1=52 | | 25-5(5-x)+5x= | | -9+3x=13.5 | | 21*9.55*16.2= | | 9.6+92= | | 9(y+6)+2y(y+3)= | | 7(4x-1)+2(x-3)=0 | | b(a-b)+b(b+c)=b(a+b)-b(b-c) | | 2y(y+3)= | | a(a+b)-b(a-b)=a^2+b^2 | | 5X+9X=2X+36 | | 7z+2=z-5 | | 5x+10=-64-7x | | 38-3x=13-8x | | 2+9(x-9)=8-9(x-7) | | 6x+12=24-3x | | 13(4x+2)-9(6x-1)=18(10x+7) | | x^5-4x^4+x^3+10x^2-4x-8=0 | | 12(x^3-2)-7x(x^2-1)=5x^3 | | 30(x-2)-5(4-x)=40(x-7)+194 | | 4+5x=-4+x | | 30(x-2)-5(4-x)=40(x-7) | | 18/x+23=29 | | 30(x-2)-5(5-x)=40(x-7) |

Equations solver categories