If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(a+4)a=6
We move all terms to the left:
3(a+4)a-(6)=0
We multiply parentheses
3a^2+12a-6=0
a = 3; b = 12; c = -6;
Δ = b2-4ac
Δ = 122-4·3·(-6)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{6}}{2*3}=\frac{-12-6\sqrt{6}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{6}}{2*3}=\frac{-12+6\sqrt{6}}{6} $
| 2x+7x9=189 | | 8-(y+5)=2y+9 | | 1206.4*x=52 | | X^2-55x+300=0 | | 12m+25=85 | | 2a+6=16= | | 1206.4x=5x | | 8x^2-49x+75=0 | | 3(x+4)=2x−1 | | x3(x+4)=2x−1 | | 3(x+2)+5=20 | | 7x-1=5x+19 | | 2a-6=16= | | X^2-55x+280=0 | | -7x+6=-5x-16 | | -8+4p=28 | | 3.82+16.18=h | | 10^3x-1+4=32 | | 6(r-4)=3r-2 | | 5(z+4=) | | 2(x+19)=57 | | -26x+40x=-28 | | 1x/5=3 | | 8+x=7x+32 | | t-184.9=-109 | | 2/3(r)=360 | | t-7.1=10.3 | | 6x+(-3)=1 | | 2a-6=18= | | 6t-16=9t-36 | | 2/3r=360 | | 5z+3(3z+8)=12+18z |