If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(k + 1) * 11k = 2(4 + 5k) + 3 Reorder the terms: 3(1 + k) * 11k = 2(4 + 5k) + 3 Reorder the terms for easier multiplication: 3 * 11k(1 + k) = 2(4 + 5k) + 3 Multiply 3 * 11 33k(1 + k) = 2(4 + 5k) + 3 (1 * 33k + k * 33k) = 2(4 + 5k) + 3 (33k + 33k2) = 2(4 + 5k) + 3 33k + 33k2 = (4 * 2 + 5k * 2) + 3 33k + 33k2 = (8 + 10k) + 3 Reorder the terms: 33k + 33k2 = 8 + 3 + 10k Combine like terms: 8 + 3 = 11 33k + 33k2 = 11 + 10k Solving 33k + 33k2 = 11 + 10k Solving for variable 'k'. Reorder the terms: -11 + 33k + -10k + 33k2 = 11 + 10k + -11 + -10k Combine like terms: 33k + -10k = 23k -11 + 23k + 33k2 = 11 + 10k + -11 + -10k Reorder the terms: -11 + 23k + 33k2 = 11 + -11 + 10k + -10k Combine like terms: 11 + -11 = 0 -11 + 23k + 33k2 = 0 + 10k + -10k -11 + 23k + 33k2 = 10k + -10k Combine like terms: 10k + -10k = 0 -11 + 23k + 33k2 = 0 Begin completing the square. Divide all terms by 33 the coefficient of the squared term: Divide each side by '33'. -0.3333333333 + 0.696969697k + k2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + 0.696969697k + 0.3333333333 + k2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + 0.696969697k + k2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + 0.696969697k + k2 = 0 + 0.3333333333 0.696969697k + k2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 0.696969697k + k2 = 0.3333333333 The k term is 0.696969697k. Take half its coefficient (0.3484848485). Square it (0.1214416896) and add it to both sides. Add '0.1214416896' to each side of the equation. 0.696969697k + 0.1214416896 + k2 = 0.3333333333 + 0.1214416896 Reorder the terms: 0.1214416896 + 0.696969697k + k2 = 0.3333333333 + 0.1214416896 Combine like terms: 0.3333333333 + 0.1214416896 = 0.4547750229 0.1214416896 + 0.696969697k + k2 = 0.4547750229 Factor a perfect square on the left side: (k + 0.3484848485)(k + 0.3484848485) = 0.4547750229 Calculate the square root of the right side: 0.674370093 Break this problem into two subproblems by setting (k + 0.3484848485) equal to 0.674370093 and -0.674370093.Subproblem 1
k + 0.3484848485 = 0.674370093 Simplifying k + 0.3484848485 = 0.674370093 Reorder the terms: 0.3484848485 + k = 0.674370093 Solving 0.3484848485 + k = 0.674370093 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.3484848485' to each side of the equation. 0.3484848485 + -0.3484848485 + k = 0.674370093 + -0.3484848485 Combine like terms: 0.3484848485 + -0.3484848485 = 0.0000000000 0.0000000000 + k = 0.674370093 + -0.3484848485 k = 0.674370093 + -0.3484848485 Combine like terms: 0.674370093 + -0.3484848485 = 0.3258852445 k = 0.3258852445 Simplifying k = 0.3258852445Subproblem 2
k + 0.3484848485 = -0.674370093 Simplifying k + 0.3484848485 = -0.674370093 Reorder the terms: 0.3484848485 + k = -0.674370093 Solving 0.3484848485 + k = -0.674370093 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.3484848485' to each side of the equation. 0.3484848485 + -0.3484848485 + k = -0.674370093 + -0.3484848485 Combine like terms: 0.3484848485 + -0.3484848485 = 0.0000000000 0.0000000000 + k = -0.674370093 + -0.3484848485 k = -0.674370093 + -0.3484848485 Combine like terms: -0.674370093 + -0.3484848485 = -1.0228549415 k = -1.0228549415 Simplifying k = -1.0228549415Solution
The solution to the problem is based on the solutions from the subproblems. k = {0.3258852445, -1.0228549415}
| 3n-8=3(n-4)+1 | | 15=7+5(f-2) | | 100+40.7+x=180 | | 6n-(-26)=92 | | X=60+-2x | | 5.75x+3=.75+13 | | -2(m-8)-3m=3m-8(8+2m) | | 7-(-2)-3= | | -9a-8+3a=-18 | | -4x+7=3x | | -8(6+5b)=3b-5 | | ax+1=6x+b | | 3n-6=4+2n | | 14s+2s-4=2+2s | | d(t)=16t^2 | | x+96+x+96=90 | | -4.5x+8.1y=5.4 | | -5(X+2)+2x=5 | | 3x-3=3(x-9) | | -30+5n=8(4n-9) | | -4.5y+8.1x=5.4 | | 5y-1+3y-7=90 | | 5+7c=26 | | 10-6v=-13 | | 7(-5+6p)+7p=-35 | | 0.06x+.08(2x)+.1(3x)=208 | | R-8.8=-8.1 | | 13=8-6m | | 4(8y-2)=-32 | | r=-12(5) | | 126=12(h) | | -4(z+7)-21=2(-2z-6)-37 |