3(n+1)-2=4(2m+3)

Simple and best practice solution for 3(n+1)-2=4(2m+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(n+1)-2=4(2m+3) equation:


Simplifying
3(n + 1) + -2 = 4(2m + 3)

Reorder the terms:
3(1 + n) + -2 = 4(2m + 3)
(1 * 3 + n * 3) + -2 = 4(2m + 3)
(3 + 3n) + -2 = 4(2m + 3)

Reorder the terms:
3 + -2 + 3n = 4(2m + 3)

Combine like terms: 3 + -2 = 1
1 + 3n = 4(2m + 3)

Reorder the terms:
1 + 3n = 4(3 + 2m)
1 + 3n = (3 * 4 + 2m * 4)
1 + 3n = (12 + 8m)

Solving
1 + 3n = 12 + 8m

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-1' to each side of the equation.
1 + -1 + 3n = 12 + -1 + 8m

Combine like terms: 1 + -1 = 0
0 + 3n = 12 + -1 + 8m
3n = 12 + -1 + 8m

Combine like terms: 12 + -1 = 11
3n = 11 + 8m

Divide each side by '3'.
n = 3.666666667 + 2.666666667m

Simplifying
n = 3.666666667 + 2.666666667m

See similar equations:

| p^2=-9 | | x^2+15x-100=0 | | 4+9h-7=3h+3 | | 3(n+5)=-2(m-2) | | 15+6=-23 | | 7x+10+4x=32 | | m^2-3m-28=0 | | 22r^2-10r+3=11r^2 | | a(2b-3)-(3-2b)=0 | | 3m^2+16m+16=0 | | x^2-33x-70=0 | | 10r^2+20r-60=7r^2+12r | | 2x-x=-6 | | x^2-33u-70=0 | | x^2-11xy+10y^2=0 | | (59-24)x=0 | | 14b^2-9b-5=12b^2 | | ln(x+1)-ln(x)=ln(1) | | -x=83 | | 6n^2+12=9n | | 2.1(1.8-1.8)=y | | w^2-7w=8 | | 3t^2+4t-1=0 | | 2m^2+m-8=0 | | 0=2.1(x-1.8) | | -3+x-(-2)=10 | | 0=2.1x-3.78 | | -4+-3x=6x-6 | | X^2+8x+12x= | | x^2-y^2=13 | | 4k^2-4k-80=0 | | 0=-6(x-9) |

Equations solver categories