3(n+4)-8=1/2n

Simple and best practice solution for 3(n+4)-8=1/2n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(n+4)-8=1/2n equation:



3(n+4)-8=1/2n
We move all terms to the left:
3(n+4)-8-(1/2n)=0
Domain of the equation: 2n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
3(n+4)-(+1/2n)-8=0
We multiply parentheses
3n-(+1/2n)+12-8=0
We get rid of parentheses
3n-1/2n+12-8=0
We multiply all the terms by the denominator
3n*2n+12*2n-8*2n-1=0
Wy multiply elements
6n^2+24n-16n-1=0
We add all the numbers together, and all the variables
6n^2+8n-1=0
a = 6; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·6·(-1)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{22}}{2*6}=\frac{-8-2\sqrt{22}}{12} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{22}}{2*6}=\frac{-8+2\sqrt{22}}{12} $

See similar equations:

| 4x−8=124x−8+8=12+84x=2044x=204 | | 2(4w-1)=-10(w-3)4 | | 3x^2-9x=10x^2-11x | | 9x+40=6x-2 | | -8/3=1/3u-9/7 | | 5b+6+3=9 | | y+5/4=1/4 | | 750+25x=3,000+10x | | 3200=2x² | | -3/5(20x-5)=-17 | | -(v+7)+1=-2v | | 3m+5(6-2m)=-4m-6 | | 6+2x=23 | | x+60+115=x+55 | | -3x-17=-(7+3x) | | 1/5x+2=3-1/7x | | -5/2+x/2=-9 | | -4x-5(x+4)=-15-8x | | -12=-2n-2n | | 3/2+y/2=6 | | -16d=15-17d | | X/5+3/5=x/7-3/5 | | -3(k-8)-(k+5)=22 | | x÷22=140 | | (4x)-1=(4x)-7 | | Y/4+1/7=y/7-1/7 | | -1-u=3u-9 | | 2/5z=-1/10 | | -2/1r+1/3-5/2r=-25/6 | | 3x+9+5=81 | | 9w-7=3w-2+5w | | 15=5(2m−5) |

Equations solver categories