If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(n+4)=(1/2)(6n+4)
We move all terms to the left:
3(n+4)-((1/2)(6n+4))=0
Domain of the equation: 2)(6n+4))!=0We add all the numbers together, and all the variables
n∈R
3(n+4)-((+1/2)(6n+4))=0
We multiply parentheses
3n-((+1/2)(6n+4))+12=0
We multiply parentheses ..
-((+6n^2+1/2*4))+3n+12=0
We multiply all the terms by the denominator
-((+6n^2+1+3n*2*4))+12*2*4))=0
We calculate terms in parentheses: -((+6n^2+1+3n*2*4)), so:We add all the numbers together, and all the variables
(+6n^2+1+3n*2*4)
We get rid of parentheses
6n^2+3n*2*4+1
Wy multiply elements
6n^2+24n*4+1
Wy multiply elements
6n^2+96n+1
Back to the equation:
-(6n^2+96n+1)
-(6n^2+96n+1)=0
We get rid of parentheses
-6n^2-96n-1=0
a = -6; b = -96; c = -1;
Δ = b2-4ac
Δ = -962-4·(-6)·(-1)
Δ = 9192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9192}=\sqrt{4*2298}=\sqrt{4}*\sqrt{2298}=2\sqrt{2298}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-2\sqrt{2298}}{2*-6}=\frac{96-2\sqrt{2298}}{-12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+2\sqrt{2298}}{2*-6}=\frac{96+2\sqrt{2298}}{-12} $
| -14-2c=-9-5c+4c | | 4(1-b)=-b+22 | | (44+20)+(3x+x)=180 | | 9p-3/4p=15 | | 4x-3=2-11x | | 3|n-5|=9 | | 14+k+k=-3(2+k) | | 2x+8-8=15-8 | | 2(5b-1)=4b+40 | | (3/2)(x-2)-5=19 | | 100*0.5^x=100 | | 8x+$5.49=$54.69 | | 100+x²=289 | | q+8=42 | | 50^x=100 | | -f=-63 | | n-92=-53 | | 0.5^x=100 | | 3x+5x-x+7=0 | | 6x+8=8(x+1)-2x | | 8a+10=2a-8 | | 8+2b-4b=1+5b | | 5(3x+7)-(15x+7)=28 | | 4(x+0.6)=6(x+0.6)-2x | | 5(y-5)-7=-3(-9+8)-4y | | X²-16x=30 | | -a+12=1.111a-7 | | 0.5=(0.8)^t | | X+15y=-7 | | 0.20(y-3)+0.02y=0.18y-0.3 | | b/40=25.00 | | 3(x-3)=6x-1-3x |